Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{18.19}+\frac{2}{19.20}\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(A=2\left(1-\frac{1}{20}\right)\)
\(A=2.\frac{19}{20}=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}\)
\(=\frac{19}{10}\)
\(\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{19\cdot20}\)
\(=2\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(=2\cdot\left(1-\dfrac{1}{20}\right)\)
\(=2\cdot\dfrac{19}{20}\)
\(=\dfrac{19}{10}\)
\(B=\frac{2^{10}\cdot55-2^{10}}{2^8\cdot27}=\frac{2^{10}\left(55-1\right)}{2^8\cdot3^3}=\frac{2^{10}\cdot2\cdot3^3}{2^8\cdot3^3}=\frac{2^{11}\cdot3^3}{2^8\cdot3^3}=2^3=8.\)
\(C=\frac{\left(3\cdot4\cdot24\right)^2}{5\cdot2^5\cdot4^2-16^2}=\frac{288^2}{5\cdot16\cdot2^3.16-16^2}=\frac{2^5\cdot3^2}{16^2\left(5\cdot2^3-1\right)}=\frac{16\cdot2\cdot9}{16\cdot16\left(5\cdot8-1\right)}\)
\(=\frac{16\cdot2\cdot9}{16\cdot16\cdot39}=\frac{16\cdot2\cdot9}{16\cdot2^4\cdot13\cdot3}=\frac{1\cdot3}{2^3\cdot13\cdot1}=\frac{3}{8\cdot13\cdot1}=\frac{3}{104}\)
\(D=\frac{11\cdot3^{22}\cdot3^7-9^{14}}{\left(2\cdot3^{14}\right)^2}=\frac{11\cdot3^{30}-3^{28}}{2^2\cdot3^{28}}=\frac{3^{28}\left(11\cdot3^2-1\right)}{4\cdot3^{38}}=\frac{3^{28}\left(11\cdot9-1\right)}{4\cdot3^{28}}=\frac{99-1}{4}=\frac{98}{4}=24,5\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
2+2^2+2^3+....+2^100
=(2+2^2)+(2^3+2^4)+....+(2^99+2^100)
=2(1+2) + 2^3(1+2)+...+2^99(1+2)
=(1+2)(2+2^3+...+2^99)
=3(2+2^3+...+2^99) chia hết cho 3
số nào nhân với 2 đều là số chẵn nên chia hết cho 2
mà 2,3 nguyên tố cùng nhau nên A chia hết cho 2 x 3 tức là chia hết cho 6
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}=\frac{19}{10}\)