Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Let \(A=x^2+2y^2+2x-4\)
From condition, we have: \(y^2=7-x^2\)
Therefore: \(A=x^2+2\left(7-x^2\right)+2x-4\)
\(\Rightarrow A=-x^2+2x+10=-\left(x-1\right)^2+11\le11\)
\(\Rightarrow A_{max}=11\) when \(\left\{{}\begin{matrix}x=1\\y^2=6\end{matrix}\right.\)
a: \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
d: \(=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)
\(=x^2+x+1-x+1=x^2+2\)
Ta có:
\(\begin{array}{l}\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right)\\ = 2x.2{x^2} + 2x.xy - 2x.{y^2} + y.2{x^2} + y.xy - y.{y^2}\\ = 4{x^3} + 2{x^2}y - 2x{y^2} + 2{x^2}y + x{y^2} - {y^3}\\ = 4{x^3} + \left( {2{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} + x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\\\left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\\ = 2x.2{x^2} + 2x.3xy + 2x.{y^2} - y.2{x^2} - y.3xy - y.{y^2}\\ = 4{x^3} + 6{x^2}y + 2x{y^2} - 2{x^2}y - 3x{y^2} - {y^3}\\ = 4{x^3} + \left( {6{x^2}y - 2{x^2}y} \right) + \left( {2x{y^2} - 3x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\end{array}\)
Do đó, \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\)
4x2+y2+2xy=4x+4y
=>(x2+2xy+y2)+3x2+y2-4x-4y=0
=> (x+y)2+3\(\left(x^2-\dfrac{4}{3}x\right)+\left(y^2-4y\right)=0\)
=> (x+y)2+3\(\left(x^2-2.\dfrac{4}{6}+\dfrac{16}{36}-\dfrac{16}{36}\right)+\left(y^2-4y+4\right)-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2-\dfrac{4}{3}+\left(y-2\right)^2-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2+\left(y-2\right)^2=\dfrac{16}{3}\)