Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (học sinh) là số học sinh cần tìm (x ∈ ℕ* và x < 1200)
Do khi xếp hàng 20; 30 đều thừa 15 học sinh nên x - 15 ∈ BC(20; 30)
Do khi xếp hàng 41 thò vừa đủ nên x ∈ B(41)
Ta có:
20 = 2².5
30 = 2.3.5
⇒ BCNN(20; 30) = 2².3.5 = 60
⇒ x - 15 ∈ BC(20; 30) = {0; 60; 120; 180; 240; 300; 360; 420; 480; 540; 600; 660; ...; 1200; ...}
⇒ x ∈ {15; 75; 135; 195; 255; 315; ...; 555; 615; ...; 1215}
Lại có B(41) = {0; 41; 82; ...; 615; 656; ...}
⇒ x = 615
Vậy số học sinh cần tìm là 615 học sinh
Gọi số học sinh của trường là a ( 0 < a < 1200 ) a thuộc N
Ta có: a - 15 chia hết cho 20; 25; 30
= .a = 15 thuộc BCNN ( 20; 25; 30 ) = 22 .3.52 = 300
=> BC ( 20; 25; 30 ) = BC ( 300 ) = { 0; 300; 600; 900; 1200;...}
= a thuộc { 15; 315; 615; 915; 915; 1215;...}
mà a<1000; a chia hết cho 41 nên a 615
Gọi số học sinh của trường đó là a
Do số Học sinh khi xếp hàng 20; 25; 30 đều dư 15 học sinh nên ( a - 15 )⋮ 20; ( a - 15 ) ⋮ 25; ( a - 15 ) ⋮ 30
Khi đó ( a - 15 ) là BC của 20, 25, 30
BC ( 20, 25, 30 ) = { 0; 300; 600; 900; … }
⇒ a - 15 ∈ { 0; 300; 600; 900; … }
⇒ a ∈ { 15; 315; 615; 915; … }
Do a chia hết cho 41 và a ∈ ( 600; 1000 ) nên a = 615
Gọi số học sinh của trường đó là a
Do số Học sinh khi xếp hàng 20; 25; 30 đều dư 15 học sinh nên ( a - 15 )⋮ 20; ( a - 15 ) ⋮ 25; ( a - 15 ) ⋮ 30
Khi đó ( a - 15 ) là BC của 20, 25, 30
BC ( 20, 25, 30 ) = { 0; 300; 600; 900; … }
⇒ a - 15 ∈ { 0; 300; 600; 900; … }
⇒ a ∈ { 15; 315; 615; 915; … }
Do a chia hết cho 41 và a ∈ ( 600; 1000 ) nên a = 615
Giải
Gọi số học sinh của trường đó là x (học sinh) (x \(\in\) \(ℕ^∗\), x < 1200)
\(Do:x:20dư15=>\left(x-15\right)\) \(⋮20\)
\(x:25dư15=>\left(x-15\right)\) \(⋮25\)
\(x:25dư15=>\left(x-15\right)\) \(⋮30\)
\(=>\left(x-15\right)\in\) \(\in BC\left(20;25;30\right)\)\(=\left\{0;300;600;900;1200;...\right\}\)
\(=>x\in\left\{15;315;615;915;1215;...\right\}\)
Mà x \(\inℕ^∗;x< 1200;x⋮41\)
=> x = 615
Vậy trường đó có 615 học sinh
615 học sinh