K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{MB}{MC}=\dfrac{1}{2}\)(gt)

nên MC=2MB

Ta có: MB+MC=BC(M nằm giữa B và C)

nên BC=2MB+MB=3MB

hay \(\dfrac{MB}{BC}=\dfrac{1}{3}\)

Xét ΔABC có

M∈BC(gt)

D∈AB(gt)

MD//AC(gt)

Do đó: ΔBMD\(\sim\)ΔBCA(Định lí tam giác đồng dạng)

\(\dfrac{C_{BMD}}{C_{BCA}}=\dfrac{BM}{BC}\)(Tỉ số chu vi giữa hai tam giác đồng dạng)

\(\Leftrightarrow\dfrac{C_{BMD}}{24}=\dfrac{1}{3}\)

hay \(C_{DBM}=8\left(cm\right)\)

Ta có: \(\dfrac{MB}{MC}=\dfrac{1}{2}\)(gt)

nên \(MB=\dfrac{1}{2}MC\)

Ta có: MB+MC=BC(M nằm giữa B và C)

nên \(BC=\dfrac{1}{2}MC+MC=\dfrac{3}{2}MC\)

hay \(\dfrac{MC}{BC}=\dfrac{2}{3}\)

Xét ΔCBA có 

M∈BC(gt)

E∈CA(Gt)

ME//AB(gt)

Do đó: ΔCME∼ΔCBA(Định lí tam giác đồng dạng)

\(\Leftrightarrow\dfrac{C_{CME}}{C_{CBA}}=\dfrac{CM}{CB}\)(Tỉ số chu vi giữa hai tam giác đồng dạng)

\(\dfrac{C_{CME}}{24}=\dfrac{2}{3}\)

hay \(C_{CME}=\dfrac{48}{3}=16\left(cm\right)\)

Vậy: \(C_{DBM}=8\left(cm\right)\)\(C_{CME}=16\left(cm\right)\)

9 tháng 2 2017

A C B M N P S1 S2 S3

Đặt BM=b, MC=a và diện tích tam giác ABC là S

do b<a nên S1<S2 nên S1=6.25

Ta có: \(\frac{S_1}{S}=\left(\frac{a}{a+b}\right)^2\)

\(\frac{S_2}{S}=\left(\frac{b}{a+b}\right)^2\)

=>\(\frac{S_1}{S_2}=\frac{a^2}{b^2}=\frac{6.25}{12.4609}\)

<=> \(\frac{a}{b}=\frac{2.5}{3.53}\)<=>\(\frac{a}{a+b}=\frac{2.5}{2.5+3.53}=\frac{2.5}{6.03}\)Thay vào  S1/S 

S1= 6,25=> S=15.075

26 tháng 12 2017

a) Theo hệ quả định lý Ta let ta có:

ΔABC có B’C’ // BC (B’ ∈ AB; C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAHC có H’C’ // HC (H’ ∈ AH, C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

10 tháng 3 2021

13 AH là sao ạ ?

10 tháng 3 2021

Mình cx ko bik nx tại vì này là thầy mình chụp bài của bên trường gửi qua lớp mình á, này là thầy mình gửi qua áundefined

9 tháng 8 2018

A B C M D

18 tháng 2 2019

Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra :

D B A B = B M B C = D M A C = D B + B M + D M A B + B C + C A

Do đó  1 3 = P B D M P A B C

Chu vi ΔDBM bằng 30. 1 3  = 10cm

Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra

E M A B = M C B C = E C A C = E M + M C + E C A B + B C + A C

do đó  2 3 = P E M C P A B C

Chu vi ΔEMC bằng 30. 2 3 = 20 cm

Vậy chu vi ΔDBM và chu vi ΔEMC lần lượt là 10cm; 20cm

Đáp án: D

Xét ΔCAB có KD//AB

nên ΔCDK đồng dạng với ΔCBA

=>\(\dfrac{S_{CDK}}{S_{CBA}}=\left(\dfrac{CD}{CB}\right)^2\)

=>\(S_{CBA}=16:\dfrac{CD^2}{CB^2}=16\cdot\dfrac{CB^2}{CD^2}\)

Xét ΔBED và ΔBAC có

góc BED=góc BAC

góc B chung

=>ΔBED đồng dạng với ΔBAC

=>\(\dfrac{S_{BED}}{S_{BAC}}=\left(\dfrac{BD}{BC}\right)^2\)

=>\(S_{ABC}=9\cdot\dfrac{BC^2}{BD^2}=16\cdot\dfrac{BC^2}{CD^2}\)

=>3/BD=4/CD

=>BC=7/3BD

=>\(\dfrac{S_{BED}}{S_{BAC}}=\left(\dfrac{3}{7}\right)^2=\dfrac{9}{49}\)

=>\(S_{BAC}=49\left(cm^2\right)\)