Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác BCEF có \(\widehat{BEC}=\widehat{BFC}=90^0\left(gt\right)\)
\(\Rightarrow BCEF\)là tứ giác nội tiếp.
\(\Rightarrow\widehat{C_1}=\widehat{E_1}\)
\(\Delta PBE\)và \(\Delta PFC\)có: \(\widehat{EPC}\)chung; \(\widehat{E_1}=\widehat{C_1}\)
\(\Rightarrow\Delta PBE\)\(\Delta PFC\)(g.g)
\(\Rightarrow\frac{PB}{PF}=\frac{PE}{PC}\Rightarrow PB.PC=PE.PF\)
Tứ giác BDHF có \(\widehat{BDH}=\widehat{BFH}=90^0\)(gt)
\(\widehat{BDH}+\widehat{BFH}=180^0\)
\(\Rightarrow\)BDHF là tứ giác nội tiếp.
\(\Rightarrow\widehat{B_1}=\widehat{F_1}\)
Gọi J là trung điểm của AH. Dễ thấy \(\Delta HEF\)nội tiếp đường tròn \(\left(J;\frac{AH}{2}\right)\)
Tứ giác HEKF nội tiếp đường tròn (J)
\(\Rightarrow\widehat{F_1}=\widehat{HEK}\left(=180^0-\widehat{HFK}\right)\)
Mà \(\widehat{B_1}=\widehat{F_1}\Rightarrow\widehat{B_1}=\widehat{HEK}\)
\(\Rightarrow KE//BC\left(đpcm\right)\)
b) Tứ giác BCEF nội tiếp\(\Rightarrow\widehat{B_1}=\widehat{HFE}\)
Mà \(\widehat{B_1}=\widehat{F_1}\Rightarrow\widehat{DFE}=2\widehat{B_1}\)(1)
\(\Delta EBC\)vuông tại E, đường trung tuyến EI
\(\Rightarrow IB=IE=\frac{1}{2}BC\Rightarrow\Delta IBE\)cân tại I
\(\Rightarrow\widehat{I_1}=2\widehat{B_1}\)(t/c góc ngoài của tam giác) (2)
Từ (1) và (2) suy ra \(\Rightarrow\widehat{I_1}=\widehat{DFE}\)
\(\Rightarrow DIEF\)là tứ giác nội tiếp.
Dễ chứng minh được \(\Delta PDF\)\(\Delta PEI\left(g.g\right)\)
\(\Rightarrow PD.PI=PE.PF\)
và \(\Delta PHE\)\(\Delta PFQ\left(g.g\right)\)
\(\Rightarrow PE.PF=PH.PQ\)
\(\Rightarrow PD.PI=PH.PQ\Rightarrow\frac{PD}{PQ}=\frac{PH}{PI}\)
\(\Rightarrow\Delta PDH\)\(\Delta PQI\)(c.g.c)\(\Rightarrow\widehat{PHD}=\widehat{PIQ}\)
Lại có \(\widehat{PHD}=\widehat{AHQ}=\widehat{AFQ}\)
\(\Rightarrow BIOF\)là tứ giác nội tiếp.
a
A