K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMPQ và ΔNQP có 

MQ=NP

\(\widehat{MQP}=\widehat{NPQ}\)

QP chung

Do đó: ΔMPQ=ΔNQP

Suy ra: \(\widehat{IPQ}=\widehat{IQP}\)

=>ΔIQP cân tại I

=>IQ=IP

Ta có: IM+IP=MP

IN+IQ=NQ

mà MP=NQ

và IQ=IP

nên IM=IN

Ta có: \(\widehat{OMN}=\widehat{OQP}\)

\(\widehat{ONM}=\widehat{OPQ}\)

mà \(\widehat{OQP}=\widehat{OPQ}\)

nên \(\widehat{OMN}=\widehat{ONM}\)

hay ΔOMN cân tại O

=>OM=ON

=>O nằm trên đường trung trực của MN(1)

Ta có: IM=IN

nên I nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OI là đường trung trực của MN

b: Ta có: OQ=OP

nên O nằm trên đường trung trực của PQ(3)

Ta có: IQ=IP

nên I nằm trên đường trung trực của PQ(4)

Ta có: KQ=KP

nên K nằm trên đường trung trực của PQ(5)

Từ (3), (4) và (5) suy ra Q,I,K thẳng hàng

9 tháng 12 2016

sai đề phải ko? M, N đâu ra

10 tháng 12 2016

M N là điểm đối xứng của O qua I và K mình thiếu sorry nha

a: Xét tứ giác BHCD có 

M là trung điểm của BC

M là trung điểm của HD

Do đó: BHCD là hình bình hành

Suy ra: BH//CD; BD//CH

=>AB⊥BD; AC⊥CD

=>\(\widehat{ABD}=\widehat{ACD}=90^0\)

b: Ta có: ΔABD vuông tại B

nên ΔABD nội tiếp đường tròn đường kính AD

hay I là giao điểm của các đường trung trực của ΔDAB