Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 17:
\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)
\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)
Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)
\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)
Vì \(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)
\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)
Câu 11)
Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)
\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)
\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)
\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)
Đáp án C
Câu 20)
Ta có:
\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)
\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)
\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)
Đáp án A.
Lời giải:
Ta có: \(y=-x^3+3x^2-1\Rightarrow y'=-3x^2+6x\)
Để hàm đồng biến thì \(y'=-3x^2+6x\geq 0\)
\(\Leftrightarrow x(x-2)\leq 0\Leftrightarrow 0\leq x\leq 2\)
\(\Leftrightarrow x\in [0;2]\)
Ta có thể chọn đáp án B
câu B nhá bạn
tính y đạo hàm rồi cho y'=0
tìm nghệm và xét dấu
47. y=x ĐA: D
48. A(-4;0); B(0;4); C(x; 3)
\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)
A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D
49.A(2;-2); B(3;1); C(0;2)
\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)
=>Tam giác vuông cân=> ĐA:C
51. ĐA:D
52: A(-1;3); B(-3;-2); C(4;1)
\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)
ĐA: C
Bài 3.9:
a)
\(\int ^{1}_{0}(y^3+3y^2-2)dy=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{y^4}{4}+y^3-2y \right )=\frac{-3}{4}\)
b) \(\int ^{4}_{1}\left (t+\frac{1}{\sqrt{t}}-\frac{1}{t^2}\right)dt=\left.\begin{matrix} 4\\ 1\end{matrix}\right|\left ( \frac{t^2}{2}+2\sqrt{t}+\frac{1}{t} \right )=\frac{35}{4}\)
d) Ta có:
\(\int ^{1}_{0}(3^s-2^s)^2ds=\int ^{1}_{0}(9^s+4^s-2.6^s)ds=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{9^s}{\ln 9}+\frac{4^s}{\ln 4}-\frac{2.6^s}{\ln 6} \right )\)
\(=\frac{8}{\ln 9}+\frac{3}{\ln 4}-\frac{10}{\ln 6}\)
h)
Ta có \(\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{1+\sin 2x}}dx=\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{\sin^2x+\cos^2x+2\sin x\cos x}}dx\)
\(=\int ^{\frac{5\pi}{4}}_{\pi}\frac{-d(\sin x+\cos x)}{|\sin x+\cos x|}=\int ^{\frac{5\pi}{4}}_{\pi}\frac{d(\sin x+\cos x)}{\sin x+\cos x}=\left.\begin{matrix} \frac{5\pi}{4}\\ \pi\end{matrix}\right|\ln |\sin x+\cos x|=\ln (\sqrt{2})\)
Bài 3.10:
a)
Đặt \(t=1-x\) thì:
\(\int ^{2}_{1}x(1-x)^5dx=\int ^{-1}_{0}t^5(1-t)d(1-t)=\int ^{0}_{-1}t^5(1-t)dt\)
\(=\left.\begin{matrix} 0\\ -1\end{matrix}\right|\left ( \frac{t^6}{6}-\frac{t^7}{7} \right )=\frac{-13}{42}\)
b) Đặt \(\sqrt{e^x-1}=t\) \(\Rightarrow x=\ln (t^2+1)\)
Khi đó
\(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=\int ^{1}_{0}td(\ln (t^2+1))=\int ^{1}_{0}t.\frac{2t}{t^2+1}dt\)
\(=\int ^{1}_{0}\frac{2t^2}{t^2+1}dt=\int ^{1}_{0}2dt-\int ^{1}_{0}\frac{2}{t^2+1}dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|2t-\int ^{1}_{0}\frac{2dt}{t^2+1}=2-\int ^{1}_{0}\frac{2dt}{t^2+1}\)
Với \(\int ^{1}_{0}\frac{2dt}{t^2+1}\), đặt \(t=\tan m\)
\(\Rightarrow \int ^{1}_{0}\frac{2dt}{t^2+1}=\int ^{\frac{\pi}{4}}_{0}\frac{2d(\tan m)}{\tan ^2m+1}=\int ^{\frac{\pi}{4}}_{0}2\cos ^2md(\tan m)\)
\(=\int ^{\frac{\pi}{4}}_{0}2dm=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|2m=\frac{\pi}{2}\)
Do đó \(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=2-\frac{\pi}{2}\)
Câu nào e đang vướng mắc thì note lại để mọi người giải đáp giúp chứ!
đồng ý ! và mình khuyên bạn, bạn nên ghi rõ chỗ nào thắc mắc và bạn đã cố gắng tới đâu, để mình biết mà chỉ
Câu 31 thử ĐA
Câu 33: có công thức
Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d
\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D
Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh
21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)
=> (P):2x - y +z - 6 = 0. ĐA: D
22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C
34. ĐA: A.
37. M --->Ox: A(3; 0; 0)
Oy: B(0; 1; 0)
Oz: C(0; 0;2)
Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B
Bài 3:
\(\overrightarrow{AB}=\left(2,2,-5\right),\overrightarrow{AC}=\left(1,-4,-4\right)\).
\(\left[\overrightarrow{AB},\overrightarrow{AC}\right]=\left(-28,3,-10\right)\).
Gọi \(\overrightarrow{n}\)là một vector pháp tuyến của mặt phẳng \(\left(ABC\right)\).
\(\hept{\begin{cases}\overrightarrow{n}\perp\overrightarrow{AB}\\\overrightarrow{n}\perp\overrightarrow{AC}\end{cases}}\)suy ra \(\overrightarrow{n}\)cùng phương với \(\left[\overrightarrow{AB},\overrightarrow{AC}\right]=\left(-28,3,-10\right)\).
Chọn \(\overrightarrow{n}=\left(-28,3,-10\right)\)ta được phương trình mặt phẳng \(\left(ABC\right)\)là:
\(-28\left(x-1\right)+3\left(y+1\right)-10\left(z-2\right)=-28x+3y-10z+51\).
Bài 4:
Phương trình mặt phẳng theo đoạn chắn: \(\frac{x}{2}+\frac{y}{-3}+\frac{z}{1}=1\).