K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Tích của mỗi hàng, cột, đường chéo là:

100.10-5.102 = 10–3

Từ đó ta điền được vào các ô trống còn lại như sau:

100 10-5 102
101 10-1 10-3
10-4 103 10-2
13 tháng 4 2017

Tích của mỗi hàng, mỗi cột,mỗi đường chéo là:

27.24.21 = 27+ 4+ 1 = 212

Từ đó ta điền được vào các ô trống còn lại như sau:

27 20 25
22 24 26
23 28 21
21 tháng 7 2017

Bài làm:

\(2^7\) \(2^0\) \(2^5\)
\(2^2\) \(2^4\) \(2^6\)
\(2^3\) \(2^8\) \(2^1\)

18 tháng 7 2017
272025
222426
232821

k tui k lại!LƯU Ý:NGƯỜI HƠN 10 ĐIỂM HỎI ĐÁP THÌ ĐƯỢC K!

20 tháng 7 2016
272025
222426
232821
19 tháng 7 2016
Sai đề rồi bạn
18 tháng 9 2023

Ta đặt các ô chưa biết như sau:

Ta có:

Tích của mỗi hàng, cột, đường chéo bằng: \({2^3}{.2^4}{.2^5} = {2^{3 + 4 + 5}} = {2^{12}}\)

\(\begin{array}{l}A = {2^{12}}:{2^6}:{2^5} = {2^{12 - 6 - 5}} = {2^1} = 2;\\B = {2^{12}}:{2^1}:{2^3} = {2^{12 - 1 - 3}} = {2^8};\\C = {2^{12}}:{2^8}:{2^4} = {2^{12 - 8 - 4}} = {2^0} = 1;\\D = {2^{12}}:{2^0}:{2^5} = {2^{12 - 0 - 5}} = {2^7};\\E = {2^{12}}:{2^7}:{2^3} = {2^{12 - 7 - 3}} = {2^2}\end{array}\)

Vậy ta có bảng hoàn chỉnh là:

29 tháng 1 2019

bài này cũng khá khó gặm but đối với anh thì khác!

Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:\(-5\le S\le5\)

\(\Rightarrow\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

Bài toán được chứng minh_._

Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5

có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

(ĐPCM)

10 tháng 12 2020

giúp mik vs