K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

bạn giải chi tiết giùm mình luôn đi

GV
29 tháng 4 2017

a) \(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{10+6}{2}.5=40\left(cm^2\right)\)

b) Xem hình vẽ

A B C D E 6 4 5 F

Tam giác vuông EAD có: \(AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-4^2}=3\)

Vì ABCD là hình thang cân nên AE = FB = 3.

Suy ra AB = EF + AE + FB = 6 + 3 + 3 = 12.

\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{12+6}{2}.4=36\left(cm^2\right)\)

3 tháng 5 2018

Ta có: h £ AD = 4cm

Þ maxS = 4.10 2 =20cm2

13 tháng 9 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hình thang cân ABCD có AB // CD

Đáy nhỏ CD = 6cm, cạnh bên AD = 5cm

Đường cao DH = 4cm. Kẻ CK ⊥ AB

Ta có tứ giác CDHK là hình chữ nhật

HK = CD = 6cm

△ AHD vuông tại H. Theo định lý Pi-ta-go ta có: A D 2 = A H 2 + D H 2

⇒  A H 2 = A D 2 - D H 2 = 5 2 - 4 2  = 25 – 16 = 9 ⇒ AH = 3cm

Xét hai tam giác vuông DHA và CKB :

∠ (DHA)= ∠ (CKB)= 90 0

AD = BC (tính chất hình thang cân)

∠ A =  ∠ B(gt)

Do đó:  △ DHA =  △ CKB (cạnh huyền, góc nhọn)

⇒ KB = AH = 3 (cm)

AB = AH + HK + KB = 3 + 6 + 3 = 12 (cm)

S A B C D  = (AB + CD) / 2. DH = (12 + 6) / 2. 4 = 36( c m 2 )

10 tháng 11 2015

1. Tính được AH=3cm theo định lý Pitago, vẽ đường cao CK (K thuộc AB), tính được BK=3cm nên HK=6cm nên AB=12cm, lúc đó sẽ tinhd được diện tích hình thang

2. Tương tự

29 tháng 8 2020

ta có tam giác ADH vuông tại H
=> AH^2+HD^2=AD^2
=>HD^2=AD^2-AH^2
            =5^2-4^2
            =9
=>HD=3 cm
kẻ BK vuông góc với CD
=>ABKH là hình chữ nhật 
=>AH=BK=4cm 
tam giác BKC vuông tại K
=>BK^2+KC^2=BC^2
=>KC^2=BC^2-BK^2
            =80-16
           =64
=>KC=8 (cm)
lại có DH+HK+KC=20
=>HK=20-3-8=9 (cm)
=>AB+HK=9 cm
ta có chu vi hình thang ABCD là AB+BC+CD+DA=9+√80+20+5=34+√80(cm)