Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
Kẻ BK là đường cao của hình thang =>BK =12
Từ B, kẻ BE // AC => ABEC là hình bình hành và BD vuông góc BE
Áp ụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 +1/BE2 =1/BK2
=>BE = 20
Theo định lý Py-ta-go, BD2 +BE2 =DE2 =>DE=25
Lại có DE= DC+CE=DC+AB
>>SABCD=(DC+AB) x BK/2=25 x \(\frac{12}{2}\) =150 (cm2)
Do hình thang ABCD có 2 đường chéo vuông góc với nhau nên
SABCD= 1/2 . AC . BD = 1/2 . 6 . 3,6 = 10,8 ( dm2 )
Vậy SABCD = 10,8dm2
Hok tốt