K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH. a) Chứng minh rằng CH=DK. b) Tính độ dài BH.Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.a) Chứng minh rằng BD vuông góc với BC. b) Tính chu vi hình thang.Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.

Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH=DK.

b) Tính độ dài BH.

Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.

a) Chứng minh rằng BD vuông góc với BC.

b) Tính chu vi hình thang.

Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.

a) Chứng minh tam giác OMN và OPQ cân tại O.

b) Chứng minh tứ giác MNPQ là hình thang cân.

c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.

Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.

a) Chứng minh rằng ΔOAB cân.

b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.

c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.

1

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

Bài 1: 
Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó:ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔCOD cân tại O

7 tháng 3 2016

G A B M O N N' C D E F

Gọi  \(N\)  là trung điểm của đoạn thắng  \(AB\)  \(;\)  \(N'\)  là giao điểm của \(GM\)  và \(AB\)

Tứ giác  \(ABCD\)  là hình thang nên  \(AB\text{//}CD\)

Khi đó, 

\(\Delta GMD\)  có  \(AN'\text{//}MD\), nên \(\frac{AN'}{MD}=\frac{GN'}{GM}\) (hệ quả của định lý Ta-lét) \(\left(3\right)\)

\(\Delta GMC\)  có  \(N'B\text{//}MC\), nên \(\frac{N'B}{MC}=\frac{GN'}{GM}\)  \(\left(4\right)\)

\(\left(3\right);\)  \(\left(4\right)\)  \(\Rightarrow\)  \(\frac{AN'}{MD}=\frac{N'B}{MC}\)  \(\left(=\frac{GN'}{GM}\right)\)

Mà  \(MD=MC\)  \(\left(gt\right)\), do đó, \(AN'=N'B\)  hay  \(N'\)  phải trùng với  \(N\)

Tức là ba điểm \(G,\)  \(N,\)  \(M\)  thẳng hàng  \(\left(\text{*}\right)\)  

Tương tự, ta cũng chứng minh được ba điểm   \(N,\)  \(O,\)  \(M\)  thẳng hàng  \(\left(\text{**}\right)\)  

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra bốn điểm   \(G,\)  \(N,\)  \(O,\)  \(M\)  thẳng hàng

Vậy, đoạn thẳng \(GO\)  sẽ lần lượt đi qua  \(N\)  và  \(M\)  hay đi qua trung điểm của  \(AB\)  và  \(CD\)

6 tháng 3 2016

Đặt AB = m, MC = MD = n.

a) Do AB // CD, ta có :

\(\frac{MI}{TA}=\frac{MD}{AB}=\frac{n}{m}\)

\(\frac{MK}{KB}=\frac{MC}{AB}=\frac{n}{m}\)

Từ (1) và (2) suy ra \(\frac{MI}{IA}=\frac{MK}{KB}\) Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB. ( nhưng lớp 8 chưa học ta -lét thì fai )

29 tháng 6 2017

Đường trung bình của tam giác, hình thang