\(\widehat{AED}\)=90 độ. CMR: DE...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)

           

9 tháng 3 2019

Rồi chứng minh gì hả bạn?

15 tháng 9 2018

gọi giao DE và AB là D'

có AB//CD hay AD' //CD

=>\(\widehat{ECD}\)=\(\widehat{EBD'}\)

lại có góc BED' = góc DEC

=> tam giác ECD đồng dạng tam giác EBD' (g.g )

=>ED=ED' hay E là trung điểm DD'

=> AE là trung tuyến ứng với cạnh DD' của tam giác ADD'

đồng thời AE là đg cao ứng với cạnh DD' (do góc AED=90 độ)

=> tam giác ADD' cân tại A

=> góc D = góc D'

mà góc CDE cũng = góc D' ( 2 góc so le trong do DD' cắt AD' //DC)

=> \(\widehat{D}\)=\(\widehat{CDE}\) ( cùng bằng góc D')

=> DE là phân giác góc D

15 tháng 9 2018

A B C D E D'

3 tháng 7 2019

Ta có: AB=BC (gt)

Suy ra: Tam giác ABC cân.

Nên    (1)

Lại có \(\widehat{A-1}=\widehat{A-2}\) (2) ( Vì AC là tia phân giác của ^AA^)

Từ (1) và (2) suy ra\(\widehat{C-1}|=\widehat{A-2}\) nên BC// AD (do\(\widehat{C-2}\(ở vị trí so le trong)

~~~~ học tốt~~~~

3 tháng 7 2019

D C F A B E P 1 2 1 2 1 2 3

Xét tứ giác PEBF có: \(\widehat{P}+\widehat{E_2}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F_2}=360^o\)(1)

Tương tự với tứ giác DEBF: \(\widehat{D}+\widehat{E}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F}=360^o\)(2)

Vì \(\widehat{B_2}+\widehat{D}=180^o\)=> \(\widehat{B_1}=\widehat{B_3}=\widehat{D}\)

(1) => \(\widehat{P}+2.\widehat{D}+\widehat{B_2}+\widehat{E_2}+\widehat{F_2}=360^o\Rightarrow\widehat{E_2}+\widehat{F_2}=360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\)

(2) => \(3.\widehat{D}+\widehat{B_2}+\widehat{E}+\widehat{F}=360^o\Rightarrow3.\widehat{D}+\widehat{B_2}+2\left(\widehat{E_2}+\widehat{F_2}\right)=360^o\)

=> \(3.\widehat{D}+\widehat{B_2}+2\left(360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\right)=360^o\)

=> \(2.\widehat{P}=360^o-\left(\widehat{D}+B_2\right)=360^o-180^o=180^o\)

=> \(\widehat{EPF}=\widehat{P}=90^o\)