K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Hình vẽ bị lỗi. Bạn thông cảm!

a) Xét \(\Delta\)KBA và \(\Delta\)CDB có: 

^BKA = ^DCB = 90 độ 

^KBA = ^CDB ( so le trong ) 

=> \(\Delta\)KBA ~ \(\Delta\)CDB  (g-g) 

b) Xét \(\Delta\)ADB  có: 

\(S\left(ADB\right)=\frac{1}{2}AD.AB=\frac{1}{2}AK.BD\)(1)

mà AB = 8cm ; AD = BC = 6cm ( ABCD là hình chữ nhật) ; BD = \(\sqrt{AD^2+AB^2}=\sqrt{6^2+8^2}=10\)(cm)

(1) => AD.AB = AK.BD => AK = 6.8 : 10 = 4,8 ( cm) 

\(S\left(KBA\right)=\frac{1}{2}AK.KB\)

với KA = 4,8 cm và KB = \(\sqrt{AB^2-AK^2}=\sqrt{8^2-4,8^2}=6,4\)(cm)

=> \(S\left(KBA\right)=\frac{1}{2}AK.KB=\frac{1}{2}4,8.6,4=15,36\)(cm^2)

c) Áp dụng tính chất phân giác ta có: 

\(\frac{BA}{BD}=\frac{FA}{FD};\frac{BK}{BA}=\frac{EK}{EA}\)(1)

Xét \(\Delta\)BAK và \(\Delta\)BDA có: ^BKA = ^BAD = 90 độ và ^B chung 

=> \(\Delta\)BAK ~ \(\Delta\)BDA ( g-g) 

-> \(\frac{BA}{BD}=\frac{BK}{BA}\)(2)

Từ (1); (2) => \(\frac{FA}{FD}=\frac{EK}{EA}\)=> EA.FA= EK.FD

1: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó:ΔAHB\(\sim\)ΔBCD

2: Ta có: ΔAHB\(\sim\)ΔBCD

nên \(\dfrac{BC}{AH}=\dfrac{CD}{HB}\)

hay BC/CD=AH/HB

mà BC/CD=EB/ED

nên EB/ED=AH/HB

hay \(EB\cdot HB=AH\cdot ED\)

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB\(\sim\)ΔBCD(cmt)

nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)

hay \(AH\cdot ED=HB\cdot EB\)(đpcm)

19 tháng 7 2019

Tham khảo lời giải tại link : https://h.vn/hoi-dap/question/249043.html

28 tháng 4 2017

Bạn ơi, H ở đâu vậy

28 tháng 3 2021

a,Xét tam giác BDE và tam giác DCE có:

+)chung góc E

+)góc BDE=DCE=90độ

suy ra tam giác BDE đồng dạng tam giác DCE(g-g)

b,Xét tam giác CHD và tam giác DCB có:

+)góc DCH=góc BDC

+)góc DHC=góc BCD

suy ra tam giác CHD đồng dạng tam giác DCB

c,Do BD vuông DE và HC vuông DE

=>BD//HC

=>CK/OB=EK/EO=HK/OD(bn suy ra từ ta-lét)

Mà OB=OD =>CK=HK=>K là trung điểm của CH.

Tỉ số bn dựa vào phần a,b

d,Gọi F là giao điểm của KF và DC(Bây h mình k vt hẳn chữ góc ra nx)

Vì HC//BD nên:

=>HCBD là hình thang

=>BH và DC là 2 đường chéo cắt nhau tại F(*)

Xét tam giác OFD và tam giác KFC,có:

+) ECK= ODF(do BD//CH)

+)DÒF=CKE(Do OD//KC và 2 góc ở vị trí sole trong)

Suy ra tam giác OFD đồng dạng tam giác KFC(g-g)

=>OFD=KFC mà 2 góc ở vị trí đối đỉnh nên

=> DC cắt OK tại F

=>BOK+OKC=180độ(2 góc trong cùng phía)

mà BOK=OKC(do KC//BO) mà 2 góc ở vị trí đồng vị nên

=>CKE+OKC=180 độ

=>O;K;E thẳng hàng mà DC cắt OK tại F nên

=>DC cắt OF tại F(**)

từ (*) và (**) suy ra:

OE;CD;BH thẳng hàng.

18 tháng 1 2022

Xét tam giác ABD:

E là trung điểm AB (gt).

H là trung điểm AD (gt).

\(\Rightarrow\) EH là đường trung bình.

\(\Rightarrow\) EH // BD; EH = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (1)

Xét tam giác CBD:

F là trung điểm BC (gt).

G là trung điểm CD (gt).

\(\Rightarrow\) FG là đường trung bình.

\(\Rightarrow\) FG // BD; FG = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (2)

Xét tamgiacs ACD:

H là trung điểm AD (gt).

G là trung điểm CD (gt).

\(\Rightarrow\) HG là đường trung bình.

\(\Rightarrow\) HG // AC (Tính chất đường trung bình).

Mà AC \(\perp\) BD (Tứ giác ABCD là hình thoi). 

\(\Rightarrow\) HG \(\perp\) BD.

Lại có: EH // BD (cmt).

\(\Rightarrow\) EH \(\perp\) HG.

Từ (1) và (2) \(\Rightarrow\) EH // FG; EH = FG.

\(\Rightarrow\) Tứ giác EFGH là hình bình hành (dhnb).

Mà EH \(\perp\) HG (cmt).

\(\Rightarrow\) Tứ giác EFGH là hình chữ nhật (dhnb).

b) Tứ giác ABCD là hình thoi (gt). 

\(\Rightarrow\) AC cắt BD tại trung điểm mỗi đường (Tính chất hình thoi).

Mà I là giao điểm của AC và BD (gt.)

\(\Rightarrow\) I là trung điểm của AC và BD.

\(\Rightarrow\left\{{}\begin{matrix}AI=\dfrac{1}{2}AC=\dfrac{1}{2}.8=4\left(cm\right).\\IB=\dfrac{1}{2}BD=\dfrac{1}{2}.10=5\left(cm\right).\end{matrix}\right.\)

Xét tam giác ABI: AI \(\perp\) BI (AC \(\perp\) BD).

\(\Rightarrow\) Tam giác ABI vuông tại I.

\(\Rightarrow S_{\Delta ABI}=\dfrac{1}{2}AI.IB=\dfrac{1}{2}.4.5=10\left(cm^2\right).\)

\(\perp\)