Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:ΔSBC cân tại S có SM là trung tuyến
nên SM vuông góc BC
BC=6cm
=>BM=CM=3cm
SM=căn 5^2-3^2=4cm
Sxq=5*3/2*4=5*3*2=30cm2
Stp=30+5^2*căn 3/2=(60+25căn 3)/2cm2
b: BC vuông góc SM
BC vuông góc AM
=>BC vuông góc (SAM)
a: SA=SB=SC=5
Gọi H là trung điểm của BC
=>SH là trung đoạn
SH^2=(SB^2+SC^2)/2-BC^2/4=(5^2+5^2)/2-6^2/4=16
=>SH=4cm
b: S SBC=1/2*SH*BC=1/2*4*6=12cm2
=>S xq=3*12=36cm2
Stp=36+6^2*căn 3/4=36+9*căn 3(cm2)
OH=1/3AH=1/3*6*căn 3/2=căn 3(cm)
SO=căn SH^2-OH^2=căn 13(cm)
V=1/3*SO*S ABC=1/3*căn 13*6^2*căn 3/4=3căn 39(cm3)
A B C 5 6 7 M D E O G
a) Theo tính chất đường phân giác ta có:
\(\frac{AD}{DC}=\frac{BA}{BC}\) => \(\frac{AD}{AD+DC}=\frac{BA}{BA+BC}\) (tính chất dãy tỉ số bằng nhau)
Suy ra: \(\frac{AD}{AC}=\frac{BA}{BA+BC}\) => \(\frac{AD}{6}=\frac{5}{5+7}\) => AD = 2,5.
b) Xét tam giác ABD có AO là phân giác. Suy ra: \(\frac{OB}{OD}=\frac{AB}{AD}=\frac{5}{2,5}=2\)
Xét tam giác BDM có: \(\frac{OB}{OD}=2\), \(\frac{GB}{GM}=2\) (theo tính chất trọng tâm).
Suy ra \(\frac{OB}{OD}=\frac{GB}{GM}\) (cùng bằng 2) => OG // DM (theo định lý Ta-let đảo)
Vậy OG//AC
\(BO=CO=AO=\dfrac{6\sqrt{3}}{3}=2\sqrt{3}\left(cm\right)\)
\(SB=\sqrt{SO^2+OB^2}=\sqrt{24+12}=6\left(cm\right)\)