Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng: \(P=\dfrac{U^2}{R}\cos^2\varphi\)
\(\Rightarrow 160=\dfrac{U^2}{R}.0,4^2\) (1)
\(340=\dfrac{U^2}{R}.\cos^2\varphi\) (2)
Lấy (1) chia (2) vế với vế ta tìm đc \(\cos\varphi = 0,6\)
\(P_1=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_1\)
\(P_2=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_2\)
\(cos\varphi_2=0,6\)
đáp án B
Đáp án D
Trong 1 chu kì , thời gian li độ của B có độ lớn hơn biên độ của C là T/3
=> Thời gian ngắn nhất để li độ điểm B đi từ biên độ đến vị trí li độ bằng điên độ tại C là T/12
\(\Rightarrow\Delta\varphi=\frac{2\pi d}{\lambda}=\frac{\pi}{6}\Rightarrow d=\frac{\lambda}{12}\)
ϕ1+ϕ2=90→tanϕ1.tanϕ2=1
→(ZL-ZC)2/R1.R2=1
→(ZL-ZC)=72→ZL=120
Động năng: \(W_đ=\dfrac{1}{2}mv^2\)
Khi \(v=0,5v_{max}\)
\(\Rightarrow W_đ=0,5^2.W=0,25W\)
\(\Rightarrow \dfrac{W_đ}{W}=\dfrac{1}{4}\)
Áp dụng: \(v_{max}= \omega A \Rightarrow \omega = \frac{v_{max}}{A} = \frac{10\pi}{5} = 2\pi \ (rad/s)\)
\(\Rightarrow T = \frac{2\pi}{\omega} = 1 s\)
Đáp án A
A