Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3.5.7.9.11 chia hết cho 3, 5, 7, 9 và 60 chia hết cho 3, cho 5 nhưng không chia hết cho 7, cho 9 nên B chia hết cho 3, cho 5; B không chia hết cho 7, cho 9
Công thức đặc biệt: a chia b dư 0 hoặc 1 thì an cũng chia b dư 0 hoặc 1.
a, Ta thấy 10 chia cho 9 dư 1 => 102011 chia cho 9 dư 1
Mà 8 chia cho 9 dư 8
Từ 2 điều trên => 102011 + 8 chia 9 dư 1 + 8 hay chia hết cho 9
Vậy...
b, Vì 13a5b chia hết cho 5 => b thuộc {0; 5}
+ Nếu b = 0 thì ta có:
13a50 chia hết cho 3
=> 1 + 3 + a + 5 + 0 chia hết cho 3
=> 9 + a chia hết cho 3
=> a thuộc {0; 3; 6; 9}
Vậy...
+ Nếu b = 5 thì ta có:
13a55 chia hết cho 3
=> 1 + 3 + a + 5 + 5 chia hết cho 3
=> 14 + a chia hết cho 3
=> a thuộc {1; 4; 7}
Vậy...
Ta có :
\(A=5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.3.7⋮7\)
\(B=7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.5.11⋮11\)
\(C=81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.\left(3^2-3-1\right)\)
\(=3^{24}.3^2.5\)
\(=3^{24}.45⋮45\)
Vậy A chia hết cho 7 , B chia hết cho 11 và C chia hết cho 45 .
A = 55 - 54 + 53
= 53( 52 - 5 + 1 )
= 53.21
Vì 21 chia hết cho 7 => 53.21 chia hết cho 7
=> A chia hết cho 7 ( đpcm )
B = 76 + 75 - 74
= 74( 72 + 7 - 1 )
= 74.55
Vì 55 chia hết cho 11 => 74.55 chia hết cho 11
=> B chia hết cho 11 ( đpcm )
C = 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 324( 34 - 33 - 32 )
= 324.45 chia hết cho 45
=> C chia hết cho 45 ( đpcm )
101.
Những số chia hết cho 3 là: 1347; 6534; 93258
Những số chia hết cho 9 là: 6534; 93258
102.
a) A={3564; 6531; 6570; 1248}
b) B = {3564; 6570.
c) B ⊂ A
103.
a) 1251 + 5316 chia hết cho 3 mà không chia hết cho 9.
b) 5436 - 1324 không chia hết cho 3, không chia hết cho 9.
c) Vì 1 . 2 . 3 . 4 . 5 . 6 = 1 . 2 . 3 . 4 . 5 . 3 . 2 = 9 . 1 . 2 . 4 . 5 . 2 chia hết cho 9 và 27 cũng chia hết cho 9 nên 1 . 2 . 3 . 4 . 5 . 6 + 27 chia hết cho 9. Do đó cũng chia hết cho 3.
104.
a) Hãy điền chư số vào dấu * để tổng 5 + * + 8 hay tổng 13 + * chia hết cho 3.
ĐS: 528;558;588,.
b) Phải điền một số vào dấu * sao cho tổng 6 + * + 3 chia hết ch0 9. Đó là chữ số 0 hoặc chữ số 9. Ta được các số: 603; 693.
c) Để số đã cho chia hết cho 5 thì phải điền vào dấu * chữ số 0 hoặc chữ số 5. Nếu điền chữ số 0 thì ta được số 430, không chia hết cho 3. Nếu điền chữ số 5 thì ta được số 435. Số này chia hết cho 3 vì 4 + 3 + 5 chia hết cho 3. Vậy phải điền chữ số 5.
d) Trước hết, để ¯¯¯¯¯¯¯¯¯¯¯∗81∗∗81∗¯ chia hết cho 10 thì chữ số tận cùng là 0; tức là ¯¯¯¯¯¯¯¯¯¯¯∗81∗∗81∗¯ = ¯¯¯¯¯¯¯¯¯¯¯∗810∗810¯. Để ¯¯¯¯¯¯¯¯¯¯¯∗810∗810¯ chia hết cho 9 thì * + 8 + 1 + 0 = * + 9 phải chia hết cho 9.
Vì * < 10 nên phải thay * bởi 9.
Vậy ¯¯¯¯¯¯¯¯¯¯¯∗81∗∗81∗¯ = 9810.
105.
a) Số chia hết cho 9 ohair có tổng các chữ số chia hết cho 9. Do đó các số cần tìm là: 450, 540, 405, 504.
b) Số chia hết cho 3 mà không chia hết cho 9 phải có tổng các chữ số chia hết cho 3 mà không chia hết cho 9. Do đó các số cần tìm là:
543, 534, 453, 435, 345, 354.
Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.
a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2.
- Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.
b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9.
- Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.
Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.
c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8.
- Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.
Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.