
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Gọi 2 số tự nhiên liên tiếp là a và a + 1
\(\left(a+1\right)^2-a^2=17\)
\(\left(a-a+1\right)\left(a-1+a\right)=17\)
\(2a-1=17\)
\(2a=17+1\)
2a = 18
a = 18 : 2
a = 9
ĐS: 9
sai r bạn ạ. Là 8 mới đúng chứ!
(a+1)2 - a2 = 17
( a + 1 + a)( a + 1 - a) = 17
2a + 1 = 17
=>2a = 16
=> a =16/2 = 8

gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20

Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15

Gọi 2 số tự nhiên chẵn liên tiếp là:
2k; 2k+2 (với k thuộc N)
Hiệu hai bình phương hai số tự nhiên chẵn liên tiếp là 36, ta có:
(2k + 2)^2 - (2k)^2=36
=> 4k^2 + 8k + 4 - 4k^2 = 36
=> 8k = 32
=> k = 4
Số cần tìm là 8 và 10

Gọi 2 số tự nhiên lẻ đó làn lượt là a và a + 2
Ta có: ( a + 2 )2 - a2 = 200
a2 + 4a + 4 - a2 = 200
4a = 196
a = 49
a + 2 = 51
Vậy 2 số tự nhiên lẻ cần tìm là 49 và 51
gọi 2 số lẻ liên tiếp cần tìm là \(2k-1\)và \(2k+1\).
Vì 2k+1 > 2k-1 nên ta có \(\left(2k+1\right)^2-\left(2k-1\right)^2=200\)
\(\Leftrightarrow4k^2+4k+1-\left(4k^2-4k+1\right)=200\)
\(\Leftrightarrow8k=200\)\(\Leftrightarrow k=\frac{200}{8}=25\)
Thay k=25 vào 2k-1 và 2k+1 ta được 2 số cần tìm là 49 và 51.
Hai số đó là 5 và 6