a−2ab+b=0

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

Ta có:

\(ab=2016\Leftrightarrow a=\frac{2016}{b}\)

Thay vào bt ra có:

\(a+b=-95.\)

\(\Leftrightarrow\frac{2016}{b}+b=-95\)

\(\Leftrightarrow2016+b^2=-95b\)

\(\Leftrightarrow b^2+95b+2016=0\)

\(\Leftrightarrow b\left(b+32\right)+63\left(b+32\right)=0\)

\(\Leftrightarrow\left(b+32\right)\left(b+63\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b+32=0\\b+63=0\end{cases}\Leftrightarrow\orbr{\begin{cases}b=-32\\b=-63\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{2016}{-32}\\a=\frac{2016}{-63}\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-63\\a=-32\end{cases}}}\)

Vậy các cặp số nguyên (a,b)là: \(\left(-32,-63\right);\left(-63,-32\right)\)

17 tháng 7 2018

Ta có: 

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+2018}{b+2018}=\frac{b-a}{b+2018}\)

Do b+2018>b => \(\frac{b-a}{b}>\frac{b-a}{b+2018}\Rightarrow1-\frac{a}{b}>1-\frac{a+2018}{b+2018}\)\(\Rightarrow\frac{a}{b}< \frac{a+2018}{b+2018}\)

20 tháng 5 2019

Ta có:\(\frac{a}{a'}+\frac{b'}{b}=1\)

\(\Rightarrow ab+a'b'=a'b\)

\(\Rightarrow abc+a'b'c=a'bc\left(1\right)\)

Lại có:\(\frac{b}{b'}+\frac{c'}{c}=1\)

\(\Rightarrow bc+b'c'=b'c\)

\(\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)

Cộng vế theo vế của (1) và (2) ta được:

\(abc+a'b'c'=0\)

17 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

12 tháng 3 2020

\(\left(a-b\right)^2\ge0< =>a^2+b^2\ge2ab\\ \left(b-c\right)^2\ge0< =>b^2+c^2\ge2bc\\ \left(c-a\right)^2\ge0< =>a^2+c^2\ge2ac\) ;

Cộng các vế tương ứng của 3 bất pt trên ta đc:

\(a^2+b^2+c^2\ge ab+bc+ac\)

<=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

<=>\(0\ge3\left(ab+bc+ac\right)\)

=> ĐPCM

Dấu = xảy ra a=b=c=0

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\). Khi đó ta có:

a)

\((a+c)(b-d)=(bk+dk)(b-d)=k(b+d)(b-d)\)

\((a-c)(b+d)=(bk-dk)(b+d)=k(b-d)(b+d)=k(b+d)(b-d)\)

\(\Rightarrow (a+c)(b-d)=(a-c)(b+d)\) (đpcm)

b)

\((a+c)b=(bk+dk)b=k(b+d).b=bk(b+d)\)

\((b+d).a=(b+d).bk=bk(b+d)\)

\(\Rightarrow (a+c)b=(b+d)a\)

c)

\(a(b-d)=bk(b-d)\)

\(b(a-c)=b(bk-dk)=bk(b-d)\)

\(\Rightarrow a(b-d)=b(a-c)\)

d)

\((b+d).c=(b+d).dk=dk(b+d)\)

\((a+c)d=(bk+dk)d=k(b+d)d=dk(b+d)\)

\(\Rightarrow (b+d)c=(a+c)d\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

e)

\((b-d).c=(b-d).dk=dk(b-d)\)

\((a-c)d=(bk-dk)d=k(b-d)d=dk(b-d)\)

\(\Rightarrow (b-d)c=(a-c)d\)

f)

\((a+b)(c-d)=(bk+b)(dk-d)=b(k+1)d(k-1)=bd(k-1)(k+1)\)

\((a-b)(c+d)=(bk-b)(dk+d)=b(k-1)d(k+1)=bd(k-1)(k+1)\)

\(\Rightarrow (a+b)(c-d)=(a-b)(c+d)\)

g)

\((2a+3c)(2b-3d)=(2bk+3dk)(2b-3d)=k(2b+3d)(2b-3d)\)

\((2a-3c)(2b+3d)=(2bk-3dk)(2b+3d)=k(2b-3d)(2b+3d)\)

\(\Rightarrow (2a+3c)(2b-3d)=(2a-3c)(2b+3d)\)

h)

\((4a+3b)(4c-3d)=(4bk+3b)(4dk-3d)=b(4k+3)d(4k-3)=bd(4k+3)(4k-3)\)

\((4a-3b)(4c+3d)=(4bk-3b)(4dk+3d)=b(4k-3)d(4k+3)=bd(4k+3)(4k-3)\)

\(\Rightarrow (4a+3b)(4c-3d)=(4a-3b)(4c+3d)\)

i,k: Hoàn toàn tương tự.

19 tháng 2 2017

bạn ơi , \(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)

hay \(\frac{1+b-c}{c}-\frac{b+c-a}{a}\) vậy bn??//