Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- a.(3x)2=1/243x33=1/9
3x=1/3 hoặc 3x=-1/3 ( vế 2 ko có x thỏa mãn)
suy ra x=3-1
b.(5x+1)=\(\sqrt{\frac{36}{49}}\)\(\Rightarrow\)5x+1=\(\frac{4}{7}\)hoặc 5x+1=\(\frac{-4}{7}\) | |
\(\Rightarrow\)x=\(\frac{-3}{35}\)hoặc x=\(\frac{-11}{35}\) | |
c.\(\frac{6}{4}\)-10x = \(\frac{4}{5}\)-3x chuyển vế :\(\frac{6}{4}\)-\(\frac{4}{5}\)= -3x + 10x \(\frac{7}{10}\)=7x \(\Rightarrow\)x =\(\frac{7}{10}\):7 \(\Rightarrow\)x= \(\frac{1}{10}\) |
a,-200 x10 t10z3
b,\(\frac{-5}{4}\)x11 y5 z4
c,\(\frac{2}{15}\)x6 y6 z9
d,\(\frac{1}{7}\)x10 y6 z7
e,-4z6 y10 z6
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
a, ta có A.5 = 5 ( 1+5 +52 +...........+549 +550)
5A = 5 +52 +53 +............... + 550 +551
5A-A = (5 +52 +53 +............+ 551) - (1+5+52 +......+550)
4A = 551 -1
A =\(\dfrac{5^{51}-1}{4}\)
vậy A =
b, B= \(\dfrac{4^5.9^4-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{\left(2^2\right)^5.\left(3^3\right)^4-2.6^9}{2^{10}.3+6^8.20}\)
=\(\dfrac{2^{10}.3^{12}-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{3^{11}-6}{10}\)
Lời giải:
1.
\((-2x^4y^3z^7)^2(\frac{1}{4}xy^5)(-3x^2yz)^3(\frac{-1}{27}x^3yz^2)\)
\(=(4x^8y^6z^{14})(\frac{1}{4}xy^5)(-27x^6y^3z^3)(-\frac{1}{27}x^3yz^2)\)
\(=(4.\frac{1}{4}.-27.\frac{-1}{27})(x^8.x.x^6.x^3)(y^6.y^5.y^3.y)(z^{14}.z^3.z^2)\)
\(=x^{18}.y^{15}.z^{19}\)
2.
\(=(\frac{-1}{3}.\frac{4}{5}.\frac{-27}{10})(x.x^5.x^2)(y^2.y^6.y)(z.z.z^4)\)
\(=\frac{18}{25}.x^8.y^9.z^6\)
3.
\(=(49.x^{10}y^2z^4)(\frac{-1}{4}.x^3yz^7)(\frac{8}{21}x^5z^4)\)
\(=(49.\frac{-1}{4}.\frac{8}{21})(x^{10}.x^3.x^5)(y^2.y)(z^4.z^7.z^4)\)
\(=\frac{-14}{3}.x^{18}.y^3.z^{15}\)
4.
\(=(\frac{-1}{64}.x^8.y^9.z^{12})(4x^2y^2z^4)(\frac{-5}{3}x^4yz)\)
\(=(\frac{-1}{64}.4.\frac{-5}{3})(x^8.x^2.x^4)(y^9.y^2.y)(z^{12}.z^4.z)\)
\(=\frac{5}{48}.x^{14}.y^{12}.z^{17}\)
5.
\(=(\frac{1}{16}.x^8.y^4z^2)(-8xyz^2).(-\frac{1}{2}x^4yz)\)
\(=(\frac{1}{16}.-8.\frac{-1}{2})(x^8.x.x^4)(y^4.y.y)(z^2.z^2.z)\)
\(=\frac{1}{4}.x^{13}.y^6.z^5\)
1.
\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)
2.
\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)
\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)
\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)
3.
\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)
\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)
\(=\frac{5}{6}x^3y^2\)
4.
\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)
\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)
\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)
5.
\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)
\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)
\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)
a: \(=-5^{14}\cdot5^4\cdot2^7=-5^{18}\cdot2^7\)
b: \(=4^4\cdot4^8=4^{12}=2^{24}\)
c: \(=-\dfrac{5^3\cdot5^6}{2^3\cdot2^6}=-\dfrac{5^9}{2^9}\)
d: \(=-\left(\dfrac{25}{36}\right)^3\)
so sánh
umk