\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+3\left(x-y\right)=1\end{cases}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

\(\hept{\begin{cases}x^2+xy+y^2=3\left(1\right)\\x^3+3\left(x-y\right)=1\left(2\right)\end{cases}.\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=3\\x^3+\left(x^2+xy+y^2\right)\left(x-y\right)=1\end{cases}}.}\)

27 tháng 1 2019

\(\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=3\\x^3+x^3-y^3=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=3\\-y^3=1^{ }\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2-x+1^2=3\\y=-1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-2x+x-2=0\\y=-1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)=0\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=-1\end{cases}}\\y=-1\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\y=-1\end{cases}}\\\hept{\begin{cases}x=2\\y=-1\end{cases}}\end{cases}}\)

vậy hệ có 2 nghiệm...

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

8 tháng 4 2017

Em học lớp 4 thôi nên ko hiểu gì đâu ạ

13 tháng 6 2018

\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)

Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)

Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)