Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20. Giải các hệ phương trình sau bằng phương pháp cộng đại số.
a) {3x+y=32x−y=7{3x+y=32x−y=7; b) {2x+5y=82x−3y=0{2x+5y=82x−3y=0; c) {4x+3y=62x+y=4{4x+3y=62x+y=4;
d) {2x+3y=−23x−2y=−3{2x+3y=−23x−2y=−3; e) {0,3x+0,5y=31,5x−2y=1,5{0,3x+0,5y=31,5x−2y=1,5
Bài giải:
a) {3x+y=32x−y=7{3x+y=32x−y=7 ⇔⇔ {5x=102x−y=7{5x=102x−y=7⇔⇔ {x=2y=2x−7{x=2y=2x−7⇔⇔ {x=2y=−3{x=2y=−3
b) {2x+5y=82x−3y=0{2x+5y=82x−3y=0 ⇔⇔ {2x+5y=88y=8{2x+5y=88y=8⇔⇔ {2x+5y=8y=1{2x+5y=8y=1⇔⇔ {x=32y=1{x=32y=1
c) {4x+3y=62x+y=4{4x+3y=62x+y=4 ⇔⇔ {4x+3y=64x+2y=8{4x+3y=64x+2y=8 ⇔⇔ {4x+3y=6y=−2{4x+3y=6y=−2⇔⇔ {x=3y=−2{x=3y=−2
d) {2x+3y=−23x−2y=−3{2x+3y=−23x−2y=−3 ⇔⇔{6x−9y=−66x−4y=−6{6x−9y=−66x−4y=−6⇔⇔ {6x−9y=−6−5y=0{6x−9y=−6−5y=0⇔⇔ {x=−1y=0{x=−1y=0
e) {0,3x+0,5y=31,5x−2y=1,5{0,3x+0,5y=31,5x−2y=1,5 ⇔⇔ {1,5x+2,5y=151,5x−2y=1,5{1,5x+2,5y=151,5x−2y=1,5⇔⇔ {1,5x+2,5y=154,5y=13,5{1,5x+2,5y=154,5y=13,5 ⇔⇔ {1,5x=15−2,5.3y=3{1,5x=15−2,5.3y=3 ⇔⇔ {1,5x=7,5y=3{1,5x=7,5y=3
⇔⇔
Xem thêm tại: http://loigiaihay.com/bai-20-trang-19-sgk-toan-9-tap-2-c44a5497.html#ixzz4rEN0z2XD
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
\(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}=5y^2-\sqrt{6x-3}\left(1\right)\\2y^4\left(5x^2-17x+6\right)=6-15x\left(2\right)\end{cases}}\)
\(ĐKXĐ:x\ge\frac{1}{2}\)
\(\left(2\right)\Leftrightarrow2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\)\(\Leftrightarrow\left(5x-2\right)\left[2y^4\left(x-3\right)+3\right]=0\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(KTMĐK\right)\\2y^4\left(x-3\right)+3=0\end{cases}}\)
Với \(2y^4\left(x-3\right)+3=0\)thì ta được \(y^4=\frac{3}{6-2x}\Rightarrow y^2=\sqrt{\frac{3}{6-2x}}\)(3)
Thay vào (1), ta được \(\sqrt{\frac{3}{6-2x}}.\sqrt{2x-1}+\sqrt{3}=5\sqrt{\frac{3}{6-2x}}-\sqrt{6x-3}\)
\(\Leftrightarrow\sqrt{6x-3}+\sqrt{3\left(6-2x\right)}=5\sqrt{3}-\sqrt{\left(6x-3\right)\left(6-2x\right)}\)
Đặt \(u=\sqrt{6x-3};v=\sqrt{3\left(6-2x\right)}\left(u,v\ge0\right)\).Khi đó ta được hệ phương trình:
\(\hept{\begin{cases}u^2+v^2=15\\u+v=5\sqrt{3}-\frac{uv}{\sqrt{3}}\end{cases}}\Leftrightarrow\hept{\begin{cases}u^2+v^2=15\\\sqrt{3}\left(u+v\right)+uv=15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3\left(u+v\right)^2=45+6uv\\\sqrt{3}\left(u+v\right)=15-uv\end{cases}}\)
Từ hệ trên suy ra được \(45+6uv=\left(15-uv\right)^2\Leftrightarrow\left(uv\right)^2-36uv+180=0\)
\(\Leftrightarrow\left(uv-6\right)\left(uv-30\right)=0\Leftrightarrow\orbr{\begin{cases}uv=6\\uv=30\end{cases}}\)(\(uv\ge0\))
+) Với uv = 30 ta được: \(u+v=-5\sqrt{3}\)(loại)
+) Với uv = 6 ta được: \(u+v=3\sqrt{3}\)suy ra u, v là hai nghiệm của phương trình \(k^2-3\sqrt{3}k+6=0\)
Giải phương trình bậc hai trên ta thu được hai nghiệm \(2\sqrt{3}\)và \(\sqrt{3}\)
Suy ra \(u=2\sqrt{3};v=\sqrt{3}\)hoặc \(u=\sqrt{3};v=2\sqrt{3}\)
* Với \(u=2\sqrt{3};v=\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=2\sqrt{3}\\\sqrt{3\left(6-2x\right)}=\sqrt{3}\end{cases}}\Rightarrow x=\frac{5}{2}\)
* Với \(u=\sqrt{3};v=2\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=\sqrt{3}\\\sqrt{3\left(6-2x\right)}=2\sqrt{3}\end{cases}}\Rightarrow x=1\)
+) Thay \(x=\frac{5}{2}\)vào (3) tìm được \(y=\pm\sqrt[4]{3}\)
+) Thay x = 1 vào (3) tìm được \(y=\pm\sqrt{\frac{\sqrt{3}}{2}}\)
Vậy hệ phương trình có 4 nghiệm (x;y) là \(\left\{\left(1;\sqrt{\frac{\sqrt{3}}{2}}\right);\left(1;-\sqrt{\frac{\sqrt{3}}{2}}\right);\left(\frac{5}{2};\sqrt[4]{3}\right);\left(\frac{5}{2};-\sqrt[4]{3}\right)\right\}\)
ĐKXĐ: \(x\ge\frac{1}{2}\)biến đổi phương trình thứ hai ta được
\(2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\Rightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(loai\right)\\2xy^4+3=6y^4\end{cases}}\)
Ta đưa về hệ về pt \(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}\cdot\sqrt{2x-1}=5y^2-\sqrt{3}\\2xy^4+3=6y^4\end{cases}}\)
Nhận thấy y=0 không là nghiệm của hệ pt nên chia cả 2 vế của pt thứ nhất cho y2 và pt thứ hai cho y4 có:
\(\hept{\begin{cases}\sqrt{2x-1}+\frac{\sqrt{3}}{y^2}\sqrt{2x-1}=5-\frac{\sqrt{3}}{y^2}\\2x-1+\frac{3}{y^4}=5\end{cases}}\)
Đặt \(a=\sqrt{2x-1};b=\frac{\sqrt{3}}{y^2}\left(a\ge0;b\ge0\right)\)
Ta có hệ pt \(\hept{\begin{cases}a+ab+b=5\\a^2+b^2=5\end{cases}}\)
Ta được \(a=\frac{5-b}{1+b}\)thay vào phương trình thứ hai ta có:
\(\left(\frac{5-b}{1+b}\right)^2+b^2=5\Leftrightarrow b^4+2b^3-3b^2-20b+20=0\Leftrightarrow\left(b-1\right)\left(b^2+5b+10\right)=0\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=1\\b=2\end{cases}}\)
Với \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\pm\sqrt[4]{3}\end{cases}}}\)
Với \(\hept{\begin{cases}a=1\\b=2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\end{cases}}}\)
Vậy \(\left(x;y\right)\in\left\{\left(\frac{5}{2};\pm\sqrt[4]{3}\right);\left(1;\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\right)\right\}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)