\(\hept{\begin{cases}3x+5y=20\\3x+4y=18\end{cases}}\) ai giúp mik giải bài này vs

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

\(\hept{\begin{cases}3x+5y=20\\3x+4y=18\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{20-5y}{3}\\y=2\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{10}{3}\\y=2\end{cases}}\)

Vậy: ...

15 tháng 3 2022

\(\hept{\begin{cases}2x-5y=11\\3x+4x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3.\left(2x-5y\right)=3.11\\2.\left(3x+4y\right)=2.5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x-15y=33\\6x+8y=10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x-15y-\left(6x+8y\right)=33-10\\3x+4y=5\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}-23y=23\\3x+4y=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=-1\\3x-4=5\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=3\end{cases}}}\)

Vậy....

15 tháng 3 2022

Có 2 phương pháp giải hệ phương trình:

1.Phương pháp thế

2.Phương pháp cộng đại số

Ở Hệ phương trình này làm theo phương pháp thế nó khá là phức tạp nên ta dùng phương pháp cộng đại số.

26 tháng 5 2019

a,
x=1; y=1

b,

x=1; y=-1

26 tháng 5 2019

a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)

Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)

Lấy (3) - (2) ta được \(y=1\)

Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1

Vậy x = y = 1

24 tháng 2 2019

Lấy \(pt\left(1\right)-3.pt\left(2\right)\)được

\(11y^2+11y=22\)

\(\Leftrightarrow y^2+y-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

Thế vô 1 trong 2 pt đầu sẽ tìm đc x

23 tháng 10 2021

a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)

Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm

23 tháng 10 2021

b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)

Hệ này cũng vô nghiệm

27 tháng 1 2019

\(\hept{\begin{cases}x^3+y^3=9\\x^2+2y^2=x+4y\end{cases}\Leftrightarrow}\hept{\begin{cases}x^3+y^3=9\\3x^2+6y^2=3x+12y\end{cases}}\)

Trừ 2 vế của pt cho nhau ta được

\(x^3-3x^2+y^3-6x^2=9-3x-12y\)

\(\Leftrightarrow\left(x-1\right)^3=\left(2-y\right)^3\)

\(\Leftrightarrow x-1=2-y\)

\(\Leftrightarrow x=3-y\)

Thế vào một trong 2 pt ban đầu sẽ tìm đc x ; y  

28 tháng 1 2019

\(\hept{\begin{cases}3x^3+5y^3-2xy=6\\2x^3+3y^3+3xy=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y^3=13xy-12\\x^3=22-21xy\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^3y^3+\left(13xy-12\right)\left(21xy-22\right)=0\\x^3=22-21xy\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^3=22-21xy\\x^3y^3+273x^2y^2-538xy+264=0\left(1\right)\end{cases}}\)

Giải (1) : \(x^3y^3+273x^2y^2-538xy+264=0\)

Pt này có 1 nghiệm là 1 , 2 nghiệm còn lại xấu quá :( \(-137\pm\sqrt{19033}\) nên mk ko làm nx , đại khái hướng làm là như vậy

Tìm đc xy rồi thay vào x3 = 22 - 21xy sẽ tìm đc x -> y

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
3 tháng 1 2020

1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)

đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa

3 tháng 1 2020

3)  ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)

đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)

\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)

PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)

\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)

Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại

a - b  = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)

\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)

từ đó tìm đc y

2 tháng 12 2019

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

18 tháng 5 2020

JKILO