Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}\sqrt{2x+3}+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}7+2x-y+2\sqrt{8x+12-2xy-3y}=16\\7+2y-x+2\sqrt{8y+12-2xy-3x}=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{8x+12-2xy-3y}=9-2x+y\\2\sqrt{8y+12-2xy-3x}=9-2y+x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4\left(8x+12-2xy-3y\right)=81+4x^2+y^2-36x-4xy+18y\\4\left(8y+12-2xy-3x\right)=81+4y^2+x^2-36y-4xy+18x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x^2+y^2-68x+4xy+30y+33=0\\4y^2+x^2-68y+4xy+30x+33=0\end{cases}}\)
\(\Leftrightarrow\left(x-y\right)\left[3\left(x+y\right)-98\right]=0\)
từ đây thì đơn giản rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)
\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)
Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1
=> hệ pt vô nghiệm
\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)