K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Gọi pt trên là pt (1), pt dưới là pt (2).

\(pt\left(1\right)\Leftrightarrow2x^2+\left(y-6\right)x-2y+4.\)

Ta có: \(\Delta=\left(y-6\right)^2-4\cdot2\left(4-2y\right)=y^2-12y+36-32+16y=y^2+4y+4=\left(y+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{6-y+y+2}{4}=2\\x=\frac{6-y-y-2}{4}=\frac{2-y}{2}\end{cases}}\)

Với từng trường hợp thay vào pt (2) sẽ ra, tự lm nhé

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

28 tháng 11 2018

hpt \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+3\left(x+y\right)-4=0\\xy\left(x+y\right)=48\end{cases}.}\)

Đặt a=x+y; b=xy

Vì x=0; y=0 ko là nghiệm của hệ nên b khác 0

Khi đó hệ pt trở \(\hept{\begin{cases}a^2-2b+3a-4=0\left(1\right)\\ab=48\left(2\right)\end{cases}}\)

Từ phương trình (2) biểu diễn a theo b, thay vào pt (1) để tìm.

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

Dùng cái đầu đi ạ

31 tháng 1 2018

\(\hept{\begin{cases}2x^2-xy+3y^2=13\\x^2+4xy-2y^2=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12x^2-6xy+18y^2=78\\13x^2+52xy-26y^2=-78\end{cases}}\)

Cộng vế với vế hai phương trình trong hệ ta có:

\(25x^2+46xy-8y^2=0\)

\(\Leftrightarrow\left(x+2y\right)\left(25x-4y\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2y\\x=\frac{4y}{25}\end{cases}}\)

TH1: \(x=-2y\)

Ta có \(4y^2-8y^2-2y^2=-6\Leftrightarrow y^2=1\Leftrightarrow\orbr{\begin{cases}y=1;x=-2\\y=-1;x=2\end{cases}}\)

TH2: \(x=\frac{4y}{25}\)

Ta có \(\frac{16y^2}{625}+\frac{16}{25}y^2-2y^2=-6\Leftrightarrow y^2=\frac{625}{139}\Leftrightarrow\orbr{\begin{cases}y=\frac{25}{\sqrt{139}};x=\frac{4}{\sqrt{139}}\\y=\frac{-25}{\sqrt{139}};x=\frac{-4}{\sqrt{139}}\end{cases}}\)

Vậy hệ có 4 nghiệm.

31 tháng 1 2018

nhan cheo 2 he pt thi bn se ra