K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

trừ 2 pt về với vế :-10x=-20

                              x=2

thay x=2 vào pt1:-8+2y=-6

                                 2y=2

                                  y=1

                                 

23 tháng 10 2021

a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)

Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm

23 tháng 10 2021

b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)

Hệ này cũng vô nghiệm

14 tháng 6 2017

\(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)

Dễ thấy y = 0 không phải là nghiệm của hệ.

Xét \(y\ne0\)

\(\Rightarrow\hept{\begin{cases}8x^3y^3+27=18y^3\left(1\right)\\4x^2y^2+6xy=y^3\left(2\right)\end{cases}}\)

Lấy (1) - 18.(2) ta được

\(8x^3y^3-72x^2y^2-108xy+27=0\)

\(\Leftrightarrow\left(2xy+3\right)\left(4x^2y^2-42xy+9\right)=0\)

Đặt \(xy=a\)

\(\Rightarrow\left(2a+3\right)\left(4a^2-42a+9\right)=0\)

Tới đây thì bạn làm tiếp nhé.

10 tháng 11 2019

Rút y ở phương trình thứ nhất, rồi thay vào phương trình thứ hai để tìm x.

Từ phương trình thứ nhất ta có:

\(y=13+4x\)(*)

Thay y vào phương trình thứ hai ta có:

\(-4+2\left(13+4x\right)=22\)

Từ đó tự tính: Nếu mày đã học nghiệm rồi

\(x=-1\)

Thay x vào (*) ta tìm y:

\(y=13+4.\left(-1\right)\)

Vậy hiệu nghiệm của hệ phương trình này là:
\(\hept{\begin{cases}x=-1\\y=9\end{cases}}\)

10 tháng 11 2019

Ta có :

\(\hept{\begin{cases}4x-y=13\\-4x+2y=22\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-\left(13+y\right)+2y=22\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13-y+2y=22\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13+y=22\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=13+y\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}4x=13+35\\y=35\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}4x=48\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}x=12\\y=35\end{cases}}}\)

Dùng cái đầu đi ạ

2 tháng 12 2019

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

18 tháng 5 2020

JKILO

9 tháng 5 2020

Xét hệ phương trình \(\hept{\begin{cases}x^3-y^3-15y-14=3\left(2y^2-x\right)\left(1\right)\\4x^3+6xy+15x+3=0\left(2\right)\end{cases}}\)

Ta có: \(\left(1\right)\Leftrightarrow x^3+3x=y^3+15y+6y^2+14\)\(\Leftrightarrow x^3+3x=y^3+6y^2+12y+8+3y+6\)

\(\Leftrightarrow x^3+3x=\left(y+2\right)^3+3\left(y+2\right)\Leftrightarrow x=y+2\)(*)

Từ (2) và (*), ta có hệ phương trình: \(\hept{\begin{cases}x=y+2\\4x^3+6xy+15x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x\left(x-2\right)+15x+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x^2+3x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\8x^3+12x^2+6x+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^3=-5\\x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1-\sqrt[3]{5}}{2}\\y=\frac{-5-\sqrt[3]{5}}{2}\end{cases}}\)

Vậy hệ phương trình có một nghiệm duy nhất là \(\left(x;y\right)=\left(\frac{-1-\sqrt[3]{5}}{2};\frac{-5-\sqrt[3]{5}}{2}\right)\)