K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Gọi ƯClN\(\left(3n+2,2n+1\right)=d\Rightarrow\left(3n+2\right)⋮d\)và \(\left(2n+1\right)⋮d\)

\(\Rightarrow2.\left(3n+2\right)⋮d\)và \(3.\left(2n+1\right)⋮d\Rightarrow2.\left(3n+2\right)-3.\left(2n+1\right)⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\Rightarrow6n+4-6n-14⋮d\)

\(\Rightarrow1⋮d\)=> d = 1 => 3n+2 và 2n+1 à hai nguyên tố cùng nhau

17 tháng 11 2017

Giúp tui đi mà !

Chiều nay nộp rùi mà không biết làm thế nào cơ !

T^T

Nhanh lên tui cần lắm !

26 tháng 8 2016

ko làm đcj

26 tháng 8 2016

a) Gọi d = ƯCLN(7n + 10; 5n + 7) (d thuộc N*)

=> 7n + 10 chia hết cho d; 5n + 7 chia hết cho d

=> 5.(7n + 10) chia hết cho d; 7.(5n + 7) chia hết cho d

=> 35n + 50 chia hết cho d; 35n + 49 chia hết cho d

=> (35n + 50) - (35n + 49) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(7n + 10; 5n + 7) = 1

=> 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau ( đpcm)

b) Lm tương tự, lấy (2n + 3) × 2 đến chỗ 2 chia hết cho d lí luận 2n + 3 lẻ => d lẻ => d = 1 ...

NM
23 tháng 11 2020

gọi a là ước chung lớn nhất của 2n+1 và 3n+2

do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1

hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.

b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5

do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1

hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau

13 tháng 12 2024

Địt

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)

\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)

Xét 2 biểu thức :

\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)

\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)

\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

26 tháng 12 2017

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

=> 2 chia hết cho d

Vậy ước chung lớn nhất của 2n + 1 và 6n + 5 là 2 .

27 tháng 12 2017

Gọi a là ƯCLN(2n+1, 6n+5)

ta có: 2n+1 chia hết cho a và 6n+5 chia hết cho a

        3.(2n+1) chia hết cho a và (6n + 5) chia hết cho a

         6n+3 chia hết cho a và 6n+5 chia hết cho a

       [(6n+5) - (6n+3)] chia hết cho a

       [6n+5 - 6n -3] chia hết cho a

        2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung