Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
a, S= [1+(-3)]+[5+(-7)]+.......+[15+(-17)]
S= (-2)+(-2)+......+(-2)
Có 10 số (-2)
S= (-2) x 10 =(-20)
b, S =[(-2)+4]+[(-6)+8]+......+[16+(-18)]
S=2+2+2+......+2
Có 11 số 2
S= 2 x 11 =22
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
giúp mình đi
gấp lắm r
\(S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Chọn A