Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Từ O kẻ OH vuông góc với SC, ta có S C ⊥ ( B D H )
Ta có V S . A H D V S . A C D = S H S C , V S . A H B V S . A C B = S H S C
mà V S . A C D = V S . A C B = 1 2 V S . A B C D = V 2
nên V S . A H D + V S . A H B V 2 = 2 S H S C
⇔ V S . A B H D V = S H S C
Có
B
C
⊥
(
S
A
M
)
nên
⇒ S A = 3 a 2
Mặt khác: ∆ C A S ~ ∆ C H O
Suy ra S H S C = S C - H C S C = 1 - H C S C = 11 13
⇒ V S . A B H D = 11 13 V
Do đó
V H . B C D = V - V S . A B H D = V = 11 12 V = 2 13 V
Đáp án C
Ta có tam giác SAO vuông cân tạiA.
Suy ra:
S
A
=
O
A
=
A
C
2
=
a
2
2
Vậy : V S . A B C D = 1 3 . S O . S A B C D = a 3 2 6
Chọn D
Ta có
Gọi H là trung điểm AB thì ,
kẻ , ta có là góc giữa (SBD) và (ABCD), do đó = 600
Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có:
Gợi ý xem bạn làm được ko, ko thì để mình trình bày luôn
Kẻ \(KC\perp HD;KC\cap HD=\left\{K\right\}\)
\(\left\{{}\begin{matrix}KC\perp HD\\KC\perp SH\end{matrix}\right.\Rightarrow KC\perp\left(SHD\right)\Rightarrow\left(SKC\right)\perp\left(SHD\right)\)
Kẻ \(CI\perp SK;CI\cap SK=\left\{I\right\}\Rightarrow CI\perp\left(SHD\right)\Rightarrow CI\perp\left(SHD\right)\)
\(\Rightarrow\left(SC,\left(SHD\right)\right)=\left(SC,SI\right)\)
Gọi H là điểm gia của AC và MD.
Ta có : (SAC) giao (SMD) = SH, cùng vuông góc vuối (ABCD)
=> SH là đường cao.
Kẻ HK vuông góc với AB, có AB vuông góc với (SKH) => góc tạo bởi (ABCD) và (SAB)
=> SKH = 600
Có tam giác ABD đều tại A => AO = \(\frac{a\sqrt{3}}{8}\)
=> tan (SKH) = SH/SK => SH = \(\frac{3a}{8}\Rightarrow V=\frac{\sqrt{3}a^3}{16}\)
=> cos OM và OA là \(\frac{a\sqrt{13}}{4}\)
bạn ơi. đề bài là cosin của OM và SA