K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Hình bạn tự vẽ nhé!!!

Ta có: \(\widehat{ACB}=180^o-\widehat{ACD}=180^o-100^o=80^o\\ \)

Xét tam giác ADC ta có: \(\widehat{DAC}+\widehat{ACD}+\widehat{ADC}=180^o\)

\(\Leftrightarrow y^o+100^o+x^o=180^o\)

\(\Leftrightarrow x^o+y^o=180^o-100^o=80^o\left(1\right)\)

Xét tam giác ABC ta có:\(\widehat{BAC}+\widehat{ABD}+\widehat{ADB}=180^o\)

\(\Leftrightarrow2y^o+2x^o+x^o=180^o\)

\(\Leftrightarrow2y^o+3x^o=180^o\left(2\right)\)

Thế (1) vào (2) ta được: \(2.\left(80-x^o\right)+3x^o=180^o\)

\(\Leftrightarrow160^o-2x^o+3x^o=180^o\)

\(\Leftrightarrow160^o+x^o=180^o\)

\(\Leftrightarrow x^o=180^o-160^o=20^o\)

Khi đó giá trị của \(x=20\)

Chúc bạn học tốtleuleu

22 tháng 2 2017

\(x=20\)

4 tháng 3 2017

Ta có: \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-2x+1\ge0\)\(\Leftrightarrow x^2+1\ge2x\).\(\left(1\right)\)

\(\left(y-2\right)^2\ge0\Leftrightarrow y^2-4y+4\ge0\Leftrightarrow x^2+4\ge4y\).\(\left(2\right)\)

\(\left(z^2-9\right)\ge0\Leftrightarrow z^2-6z+9\ge0\Leftrightarrow z^2+9\ge6z\).\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\) nhân vế theo vế ta được:

\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)\ge48xyz\)

mà theo đề ta có:\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)=48xyz\)

nên \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Thay \(x=1;y=2;z=3\)vào biểu thức A ta được:

\(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\dfrac{1+8+27}{\left(1+2+3\right)^2}=1\)

Vậy giá trị của biểu thức \(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}\)là 1.

10 tháng 10 2017

Xét hình thang cân ABCD có:

MA=MB (M là trung điểm AB:gt)

=>MA đối xứng với MB qua MN

AD=BC (do ABCD là htc)

=>AD đối xứng với BC qua MN

ND=NC (N là trung điểm của AC:gt)

=>ND đối xứng với NC qua MN

Do đó tứ giác MADN đối xứng với tứ giác MBCN qua MN

Vậy htc ABCD có một trục đối xứng là MN

Câu 4: 

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

c: Để A=-3 thì x-1=-6

hay x=-5(loại)

14 tháng 9 2017

Điều kiện:

\(x-1\ne0\Rightarrow x\ne1\)

\(x^3+x\ne0\Leftrightarrow x\ne0\)

21 tháng 9 2017

a)x^2+5y^2+2x-4xy-10y+14

=x^2+2x-4xy+5y^2-10y+14

=x^2+2x(1-2y)+5y^2=10y+14

=x^2+2x(1-2y)+(1-2y)^2+5y^2-10xy-(1=2y)^2+14

=(x+1-2y)^2+5y^2-10y-(1-4y+4y^2)+14

=(x+1-2y)^2+5y^2-10y-1+4y-4y^2+14

=(x+1-2y)^2+y^2-6y+13

=(x+1-2y)^2+(y-3)^2+4

Vì....(đpcm)

b)5x^2+10y^2-6xy-4x-2y+3

=(x^2-6xy+9y^2)+(4x^2+1-4x)+(y^2-2y+1)+1

=(x-3y)^2+(2x-1)^2+(y-1)2+1

Vì....

(đpcm)

7 tháng 3 2017

\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{120}\right)\)

= \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{121}{120}\)

= \(\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{11^2}{10.12}\)

= \(\dfrac{2}{1}.\dfrac{2}{3}.\dfrac{3}{2}.\dfrac{3}{4}.\dfrac{4}{3}.\dfrac{4}{5}.....\dfrac{11}{10}.\dfrac{11}{12}\)

= \(\dfrac{2}{1}\left(\dfrac{2}{3}.\dfrac{3}{2}\right)\left(\dfrac{3}{4}.\dfrac{4}{3}\right)...\left(\dfrac{10}{11}.\dfrac{11}{10}\right).\dfrac{11}{12}\)

= \(2.\dfrac{11}{12}\)

= \(\dfrac{11}{6}\)

\(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)....\left(1+\frac{1}{120}\right)\\ =\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{121}{120}\\ =\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{11^2}{10.12}\\ \)

\(=\frac{2.11}{1.12}=\frac{11}{6}\)

Xét tứ giác ABEC có 

AB//EC

AC//BE

Do đó: ABEC là hình bình hành

Suy ra: AC=BE

mà AC=BD

nên BE=BD

hay ΔBED cân tại B

27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)