![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
\(VP=\dfrac{1}{a+1}+\dfrac{1}{a\left(a+1\right)}=\dfrac{a}{a\left(a+1\right)}+\dfrac{1}{a\left(a+1\right)}=\dfrac{a+1}{a\left(a+1\right)}=\dfrac{1}{a}=VT\)
Bài 4:
\(\dfrac{n+3}{n-2}=\dfrac{n-2+5}{n-2}=\dfrac{n-2}{n-2}+\dfrac{5}{n-2}=1+\dfrac{5}{n-1}\in Z\)
\(\Rightarrow5⋮n-2\)
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{3;1;7;-3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mk chưa học đến thì mk bảo chưa học có làm sao đâu, hay để mk đi hỏi bạn bè cho
?2 x=8,16,24,32,40
?3Ư(12)=1,2,3,4,6,12
?4Ước của 1 là 1
Bội của 1 là 1,2,3,4,5,6,7,8,9,........... vân vân và vân vân
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\left(\frac{1}{2013}-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)
\(C=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
c/ \(\left(2017-\dfrac{5}{181}+\dfrac{1}{50}\right)-\left(4+\dfrac{3}{181}-\dfrac{3}{50}\right)-\left(1-\dfrac{8}{181}+\dfrac{3}{50}\right)\)
\(=2017-\dfrac{5}{181}+\dfrac{1}{50}-4-\dfrac{3}{181}+\dfrac{3}{50}-1+\dfrac{8}{181}-\dfrac{3}{50}\)
\(=2012+\dfrac{1}{50}=2012,02\)
d/ \(1-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{99\cdot100}\)
\(=1-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
\(=1-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=1-\left(1-\dfrac{1}{100}\right)=1-1+\dfrac{1}{100}=\dfrac{1}{100}\)