Tìm GTNN và GTLN cùa A = 6x-2/3x^2+1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

Ta có A = \(\frac{6x-2}{3x^2+1}=\frac{3x^2+1-3x^2+6x-3}{3x^2+1}=1-\frac{3\left(x-1\right)^2}{3x^2+1}\le1\)

=> Max A = 1

Dấu "=" xảy ra <=> x - 1 = 0 

<=> x = 1

Vậy Max A = 1 <=> x = 1

Lại có A = \(\frac{6x-2}{3x^2+1}=\frac{-9x^2-3+9x^2+6x+1}{3x^2+1}=-3+\frac{\left(3x+1\right)^2}{3x+1}\ge-3\)

Dấu "=" xảy ra <=> 3x + 1 = 0 

<=> x = -1/3

Vậy Min A = -3 <=> x = -1/3 

9 tháng 9 2016

Bài 1:

a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)

=>đpcm

b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)

=>đpcm

Bài 2:

\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)

Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2

\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)

Vậy x=5 thì B đạt GTLN là -3

9 tháng 9 2016

A = 25x2 + 3 - 10x

= (5x)2 - 2 . 5x . 1 + 1 + 2

= (5x - 1)2 + 2

(5x - 1)2 lớn hơn hoặc bằng 0

(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0 

Vậy A > 0 vs mọi x (đpcm)

B = - 9x2 - 2 + 6x 

= - [(3x)2 - 2 . 3x . 1 + 1 + 1]

= - [(3x - 1)2 + 1]

(3x - 1)2 lớn hơn hoặc bằng 0

(3x - 1)2 + 1 lớn hơn hoặc bằng 1 

- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng  - 1 < 0

Vậy B < 0 với mọi x (đpcm)

***

A = 4x2 - 4x + 3

= (2x)2 - 2 . 2x . 1 + 1 + 2

= (2x - 1)2 + 2

(2x - 1)2 lớn hơn hoặc bằng 0

(2x - 1)2 + 2 lớn hơn hoặc bằng 2

Min A = 2 khi x = 1/2

B = -x2 + 10x - 28

= - [x2 - 2 . x . 5 + 25 + 3]

= - [(x - 5)2 + 3]

(x - 5)2 lớn hơn hoặc bằng 0

(x - 5)2 + 3 lớn hơn hoặc bằng 3

- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3

Vậy Max B = 3 khi x = 5

13 tháng 7 2019

\(A=-x^2+x+1\)

\(\Leftrightarrow A=-\left(x^2-x-1\right)\)

\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)\)

\(\Leftrightarrow-A=\left[\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right]\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)hay \(-A\ge\frac{-5}{4}\)

\(\Rightarrow A\le\frac{5}{4}\)

Vậy \(A_{max}=\frac{5}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))

13 tháng 7 2019

\(D=4x^2+6x+1\)

\(D=\left(2x\right)^2+2.2x.\frac{3}{2}+\frac{9}{4}+1-\frac{9}{4}\)

\(D=\left(2x+\frac{9}{4}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu = xảy ra khi : 

  \(2x+\frac{9}{4}=0\Rightarrow x=-\frac{9}{8}\)

Vậy Dmin = - 5/ 4 tại x = -9/8

21 tháng 12 2017

day la cau hoi lop may vay minh moi hoc lop 7

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)