Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phân tích 15 n + 15 n + 2 = 113.2. 15 n .
b) Phân tích n 4 – n 2 = n 2 (n - 1)(n +1).
Đặt đa thức là M
\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)
\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)
\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)
\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
Ta có
n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9
=> M chia hết cho 9
Mặt khác
Vì n là số lẻ nên n - 1 và n+1 là số chẵn
=> (n - 1)(n+1) chia hết cho 8
\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128
=> M chia hết cho 128
Mà (9;128)=1
=> M chia hết cho 9x128=1152 ( đpcm )
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
`(n^2+3n+1)^2-1`
`=(n^2+3n+1)-1^2`
`=(n^2+3n+1+1)(n^2+3n+1-1)`
`=(n^2+3n+2)(n^2+3n)`
`=(n+1)(n+2)n(n+3)`
`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.
`=> n(n+1)(n+2)(n+3) vdots 24`