K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

\(\sqrt{x^2-2x+4}+1\)   

\(=\sqrt{x^2-2x+1+3}+1\)   

\(=\sqrt{\left(x-1\right)^2+3}+1\)   

Có 

\(\left(x-1\right)^2+3\ge3\forall x\)

\(\sqrt{\left(x-1\right)^2+3}\ge\sqrt{3}\)   

\(\sqrt{\left(x-1\right)^2+3}+1\ge\sqrt{3}+1\)   

Dấu = xảy ra khi và chỉ khi 

x - 1 = 0 

x = 1 

Vậy min = \(\sqrt{3}+1\)   khi và chỉ khi x = 1 

21 tháng 6 2021

thanks

20 tháng 6 2021

\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\left(đk:x\ge2;y\ge3;z\ge5\right)\)

\(< =>\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)

\(< =>\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Do \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)

Cộng theo vế ta được \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2\ge0\)

Mà \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x = 3 ; y = 7 ; z = 14 ( tmđk )

Vậy ...

20 tháng 6 2021

thank you

24 tháng 5 2021

phần c nào bạn ơi

bạn ghi cả đề bài ra nha!

Phần C nào thế bạn?

8 tháng 7 2021

\(-7xy\sqrt{\frac{16}{xy}}\)

\(-7xy\frac{4\sqrt{xy}}{xy}\)

\(-28\sqrt{xy}\)

25 tháng 9 2018

??? what bài nào cơ?

OoO ToT

25 tháng 9 2018

https://lazi.vn/uploads/edu/exercise/1505311489_8.jpg

18 tháng 7 2019

Đề bài đâu z :v 

Hỏi z thôi chứ e chưa học lớp 9

11 tháng 10 2019

bạn ơi cho mình xin cái đề bài

9 tháng 7 2017

chữ chị lớp 9 mà đều thế ạ

9 tháng 7 2017

Nâng cao và phát triển toán Vũ Hữu Bình .
Tập 1 - BĐT 
:3

15 tháng 12 2017

\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)

\(A=\sqrt{9.3}-2\sqrt{3.4}-\sqrt{25.3}\)

\(A=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)

\(A=-6\sqrt{3}\)

\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)

\(B=\frac{3-\sqrt{7}+3\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

\(B=\frac{6}{9-7}=3\)

15 tháng 12 2017

\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)

\(=\sqrt{3^2.3}-2.\sqrt{2^2.3}-\sqrt{5^2.3}\)

\(=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)

\(=-6\sqrt{3}\)

vậy \(A=-6\sqrt{3}\)

\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)

\(B=\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(B=\frac{3-\sqrt{7}+3+\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

\(B=\frac{6}{9-7}\)

\(B=\frac{6}{2}\)

\(B=3\)

vậy \(B=3\)