Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+1n−2
=n+3−2n−2
=n−2+3n−2
=n−2n−2 +3n−2
Suy ra n - 2 thuộc ước của 3
Ta có Ư( 3 ) = { -1;-3;1;3 }
Do đó
n - 2 = -1
n = -1 + 2
n = 1
n - 2 = -3
n = -3 + 2
n = -1
n - 2 = 1
n = 1 + 2
n = 3
n - 2 = 3
n = 3 + 2
Để A nguyên thì n - 1 chia hết cho n - 3
=> n - 3 + 2 chia hết cho n - 3
=> 2 chia hết cho n - 3
=> n - 3 thuộc Ư(2) = {-1;-2;1;2}
Ta có bảng :
n - 3 | -2 | -1 | 1 | 2 |
n | 1 | 2 | 4 | 5 |
\(\text{https://olm.vn/hoi-dap/question/932779.html}\)
link đó bn
mình ko biết làm chữ xanh
okey :v
\(n^4+2n^3+5n^2\text{ là bình phương của 1 số}\Leftrightarrow n^2\left(n^2+2n+5\right)\text{ là bình phương của 1 số}\)
mà n nguyên do đó:
\(n^2+2n+5\text{ là bình phương của 1 số nguyên}\Rightarrow\left(n+1\right)^2+4=k^2\left(k\text{ nguyên}\right)\)
đến đây ez
\(n^3-n^2-n-2\)
\(=n^3-2n^2+n^2-2n+n-2\)
\(=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)\)
\(=\left(n-2\right)\left(n^2+n+1\right)\)
Điều kiện cần để \(n^3-n^2-n-2\)là số nguyên tố:
\(\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}\Rightarrow\orbr{\begin{cases}n=3\\\orbr{\begin{cases}n=0\\n=-1\left(loai\right)\end{cases}}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}}\)
Từ đó tìm được n = 3 và n = 0
Vì là điều kiện cần nên ta phải thử lại
\(n=3\Rightarrow n^3-n^2-n-2==13\)(thỏa mãn)
\(n=0\Rightarrow n^3-n^2-n-2=-2\) (loại)
Vậy n = 3
Chúc bạn học tốt.
\(n^3-n^2-n-2=n^3-2n^2+n^2-2n+n-2\)
\(=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)=\left(n-2\right)\left(n^2+n+1\right)\)
\(\Rightarrow\orbr{\begin{cases}n-2=1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=3\\n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n^3-n^2-n-2=11\left(TM\right)\\n^3-n^2-n-2=-2\left(L\right)\end{cases}}}\)
Vậy n=3
a: Để A là số nguyên thì \(x^3-3x^2-x^2+3x+x-3-7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
b: Đề sai rồi bạn
Với \(n=0\Rightarrow B=100\left(hs\right)\)
Với \(n\ne0\) ta có:
\(B=\left(n^2+10\right)^2-36n^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để B là số nguyên tố thì \(n^2-6n+10\) hoặc \(n^2+6n+10\) bằng 1.
Mà \(n\in N;n\ne0\Rightarrow n^2-6n+10< n^2+6n+10\)
\(\Rightarrow n^2-6n+10=1\Rightarrow n^2-6n+9=0\Rightarrow\left(n-3\right)^2=0\Rightarrow n=3\)
Thử n=3 vào B ta được:
\(B=\left(3^2+10\right)^2-36\cdot3^2=19^2-324=37\) là số nguyên tố (TM)
Vậy \(n=3\)
\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)
Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp
nên n^3+3n^2+2n chia hết cho 3!=6
=>Để P nguyên thì 2n+1/1-2n nguyên
=>2n+1 chia hết cho 1-2n
=>2n+1 chia hết cho 2n-1
=>2n-1+2 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)