Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Xét \(\Delta BAD,\Delta BKD\) có:
\(\widehat{A}=\widehat{K_2}=90^o\)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh huyền chung
\(\Rightarrow\Delta BAD=\Delta BKD\) ( c.huyền - g.nhọn )
\(\Rightarrow AD=DK\) ( cạnh t/ứng )
Trong \(\Delta DKC\) có: \(\widehat{K_1}=90^o>\widehat{C}\)
\(\Rightarrow DC>DK\)
\(\Rightarrow DC>AD\left(đpcm\right)\)
b) Ta có: \(AE< AB\Rightarrow ED< BD\) ( quan hệ giữa hình chiếu và đường xiên )
\(AD< AC\Rightarrow BD< BC\) ( quan hệ giữa hình chiếu và đường xiên )
\(\Rightarrow ED< BD< BC\)
\(\Rightarrow ED< BC\left(đpcm\right)\)
Vậy...
\(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\Leftrightarrow\frac{a^n}{c^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n+b^n-a^n}{c^n+d^n-c^n}=\frac{b^n}{d^n}\)
\(\Leftrightarrow\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\)
Từ đó suy ra đpcm.
Áp dụng t/c dãy tỉ số bằng nhau, ta có: \(\left(\frac{a}{c}^n\right)=\frac{a^n+b^n}{c^n+d^n}=\frac{\left(a^n+b^n\right)-a^n}{\left(c^n+d^n\right)-c^n}=\frac{b^n}{d^n}\)
=> \(\left(\frac{a}{c}\right)^n=\left(\frac{b}{d}\right)^n\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
Bài 2:
a: Ta có: Om là tia phân giác của \(\widehat{xOy}\)
nên \(\widehat{xOm}=\widehat{yOm}=\dfrac{180^0}{2}=90^0\)
Do đó: Om\(\perp\)xy
b: Ta có: \(\widehat{xOa}+\widehat{mOa}=90^0\)
\(\widehat{mOb}+\widehat{yOb}=90^0\)
mà \(\widehat{mOa}=\widehat{yOb}\)
nên \(\widehat{xOa}=\widehat{mOb}\)
Gọi 3 số cần tìm là a,b,c,ta có:
\(\frac{a}{5}=\frac{b}{9};\frac{a}{10}=\frac{c}{7}\) => \(\frac{a}{10}=\frac{b}{18}=\frac{c}{7}\)
Đặt: \(\frac{a}{10}=\frac{b}{18}=\frac{c}{7}=k\Rightarrow\begin{cases}a=10k\\b=18k\\c=7k\end{cases}\)
Vì BCNN(a;b;c) = 10.9.7.k = 630.k = 3150 => k = 5
=> \(\begin{cases}a=50\\b=90\\c=35\end{cases}\)
Mình chỉ làm những câu rõ đề thôi nhé ^^
1/ a/ Đặt \(t=2x-3\) thì pt trở thành \(t^3=\left(t+2\right)^2\Leftrightarrow t^3-t^2-4t-4=0\Leftrightarrow t^2\left(t-1\right)-4\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t^2-4\right)=0\Leftrightarrow\left(t-2\right)\left(t-1\right)\left(t+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=1\\t=-2\end{array}\right.\)
Tới đây dễ rồi .
b/ Tương tự đặt \(a=2x-3\) thì pt trở thành \(a^3=a+2\Leftrightarrow a^3-a-2=0\)
Bạn xem lại đề , lớp 7 chưa học giải pt này đâu
c/ VT > 0 => VP > 0 => x > 0
Với x > 0 thì: \(\left|x+3\right|+\left|x+4\right|+\left|x+5\right|=x+3+x+4+x+5=3x+12\)
Tới đây dễ rồi :)
4) |2-|3-2x||=4
<=>\(\left[\begin{array}{nghiempt}2-\left|3-2x\right|=4\\2-\left|3-2x\right|=-4\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}\left|3-2x\right|=-2\left(vl\right)\\\left|3-2x\right|=6\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}3-2x=6\\3-2x=-6\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{9}{2}\end{array}\right.\)
+ Nếu AMB = AMC
Có: AMB + AMC = 180o ( kề bù)
=> AMB = AMC = 90o
t/g AMC = t/g AMB ( cạnh huyền - góc nhọn)
=> MC = MB ( mâu thuẫn với đề)
Do đó AMB > AMC hoặc AMB < AMC
Vẽ K là trung điểm BC
Dễ c/m AK _|_ BC
Có: CK = BK ( cách vẽ)
CM > BM (gt)
=> CM > CK > BM
AMB là góc ngoài của t/g AKM nên AMB > AKM = 90o ( hệ quả góc ngoài của t/g)
Mà: AMB + AMC = 180o ( kề bù)
Do đó, AMC < 90o < AMB
=> AMC < AMB (đpcm)
Dài thế.
Xét ∆BMC ta có
BM<BC
\(\Rightarrow\)MBI > MCI
\(\Rightarrow\) MBA < MCA (1)
Xét ∆ABM và ∆ACM có
AB = AC
AM chung
MB < MC
\(\Rightarrow\) BAM < CAM (2)
Mà ta có:
AMB = 180 - (MBA + BAM) > 180 - (MCA + CAM) = AMC
Vậy AMB > AMC
Bài 4:
\(f\left(x\right)+x.f\left(-x\right)=x+1\) (*)
Thay \(x=1\) vào (*), ta có:
\(f\left(1\right)+1.f\left(-1\right)=1+1\Rightarrow f\left(1\right)+f\left(-1\right)=2\) (**)
Thay \(x=-1\) vào (*), ta có:
\(f\left(-1\right)+\left(-1\right).f\left(-\left(-1\right)\right)=-1+1\Rightarrow f\left(-1\right)-f\left(1\right)=0\) (***)
Trừ (**) và (***) vế theo vế, ta có:
\(\left(f\left(1\right)+f\left(-1\right)\right)-\left(f\left(-1\right)-f\left(1\right)\right)=2-0\)
\(\Rightarrow f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\)
\(\Rightarrow\left(f\left(1\right)+f\left(1\right)\right)+\left(f\left(-1\right)-f\left(-1\right)\right)=2\)
\(\Rightarrow2.f\left(1\right)=2\)
\(\Rightarrow f\left(1\right)=1\)
Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)
Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.
Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)
Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)
Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)
Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.
Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9
Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)
Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.
Tới đây bạn tự làm nhé ^^
Chị Ngọc chịu khó cày thiệt á nha, cày cả trưa luôn ^^
E lười thí mồ =)))
Sai rồi, quan hệ cạnh và góc đối diện không đc áp dụng ở 2 tam giác như bạn làm đâu nhe!
a)Ta có: AC<AB
=>\(\widehat{ADC}\)<\(\widehat{ADB}\)
b)