Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>9\)
\(P=\sqrt{\frac{x+7}{\sqrt{x}-3}}=\sqrt{\sqrt{x}+3+\frac{16}{\sqrt{x-3}}}=\sqrt{\sqrt{x}-3+\frac{16}{\sqrt{x}-3}+6}\)
\(P\ge\sqrt{2\sqrt{\left(\sqrt{x}-3\right).\frac{16}{\left(\sqrt{x}-3\right)}}+6}=\sqrt{14}\)
\(\Rightarrow P_{min}=\sqrt{14}\) khi \(\sqrt{x}-3=4\Rightarrow x=49\)
b/ Phương trình hoành độ giao điểm: \(x^2-6x-m^2+1=0\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=-m^2+1\end{matrix}\right.\)
\(x_1^2-6x_2+x_1x_2=48\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-6x_2=48\)
\(\Leftrightarrow-6x_1-6x_2=48\)
\(\Leftrightarrow x_1+x_2=-8\)
Mà theo Viet \(x_1+x_2=-6\Rightarrow\) không tồn tại m thỏa mãn
hôm qua mình làm B rồi nhé
\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}}{x+\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)Với x >= 0 ; \(x\ne1\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
1, Với \(x\ge0;x\ne25\)
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}-\frac{1}{3}< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}-15-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\Leftrightarrow\frac{2\sqrt{x}-20}{3\left(\sqrt{x}+5\right)}< 0\)
\(\Leftrightarrow\sqrt{x}-10< 0\Leftrightarrow x< 100\)Kết hợp với đk vậy \(0\le x< 100;x\ne25\)
2, Với \(x\ge0;x\ne4;9\)
\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}>0\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)
Vậy \(x>4;x\ne9\)
3, Với \(x>0;x\ne9\)
\(P=\frac{x}{\sqrt{x}-2}-1>0\Leftrightarrow\frac{x-\sqrt{x}+2}{\sqrt{x}-2}>0\Leftrightarrow x>4\)
Vậy \(x>4;x\ne9\)
4, Với \(x>0;x\ne1;9\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kết hợp với đk vậy \(0< x< 9;x\ne1\)
Kẻ đường cao AH
\(\Rightarrow\widehat{BAH}=\widehat{ACB}\) (cùng phụ góc B) \(\Rightarrow\widehat{BAH}=a\)
\(\left(sina+cosa\right)^2=sin^2a+cos^2a+2sina.cosa\)
\(=1+2sina.cosa=1+2.\frac{BH}{AB}.\frac{AH}{AB}=1+\frac{2AH.BH}{AB^2}=1+\frac{2AH.BH}{BH.BC}=1+\frac{2AH}{BC}\)
\(1+sinb=1+\frac{AH}{AM}=1+\frac{AH}{\frac{BC}{2}}=1+\frac{2AH}{BC}\)
\(\Rightarrow\left(sina+cosa\right)^2=1+sinb\)
Chưa chết đâu !
đây là câu lo lắng hỏi về sức khỏe của người khác chứ có phải là rủa người ta chết đâu mà căng thế hả bạn Nguyễn Thùy Linh