K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2015

Khai triển ra rồi cộng các hệ số của x là ra kết quả

6 tháng 10 2016

a) \(x^7+x^2+1\)

\(=x^7-x+x+x^2+1\)

\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^4+x\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)

6 tháng 10 2016

b) \(x^7+x^5+1\)

\(=x^7+x^6+x^5-x^6+1\)

\(=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x^3-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^4-x^3+x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^3-x^2+1\right)\left(x^2+x+1\right)\)

10 tháng 7 2016

\(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left[\left(x-1\right)\left(x-7\right)\right].\left[\left(x-3\right)\left(x-5\right)\right]-20\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)

Đặt \(x^2-8x+11=t\) \(\Rightarrow\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20=\left(t-4\right)\left(t+4\right)-20=t^2-16-20=t^2-36=\left(t-6\right)\left(t+6\right)\)\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left(x^2-8x+11-6\right)\left(x^2-8x+11+6\right)=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) Hàm số \(y = 6{\rm{x}} + 8\) có hệ số của x là 6; hệ số tự do là 8.

b) Hàm số \(y =  - x - 5\)có hệ số của x là – 1; hệ số tự do là -5.

c) Hàm số \(y = \dfrac{x}{3}\) có hệ số của x là \(\dfrac{1}{3}\); hệ số tự do là 0.

14 tháng 8 2019

ai thi đấu với mình ko

14 tháng 8 2019

\(x^7+x^5+x^4+x^3+x^2+1\)

\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)

\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)

5 tháng 9 2017

thành nhân tử à

10 tháng 8 2018

a, k ph đc

b,Đặt \(A=...=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt x^2+5x+4=t,ta có:

\(A=t\left(t+2\right)-24=t^2+2t-24=t^2-4t+6t-24=t\left(t-4\right)+6\left(t-4\right)=\left(t-4\right)\left(t+6\right)\)

\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)