\(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) có nghi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

khoanh vào chữ cái đặt trước câu trả lời đúng: 1. Phương trình nào sau đây không là phương trình bậc nhất 2 ẩn? a, 2x+3y=-1 b, 0x+5y=2 c, -3x+0y=0 d, 2x+\(\sqrt{y}\)=5 2. \(\left\{{}\begin{matrix}x\in R\\y=-\dfrac{1}{2}x+1\end{matrix}\right.\)là nghiệm của phương trình: a, 2x+y=1 b, x+2y=-21 c, x+2y=2 d, 2x+y=2 3. Cặp số nào...
Đọc tiếp

khoanh vào chữ cái đặt trước câu trả lời đúng:

1. Phương trình nào sau đây không là phương trình bậc nhất 2 ẩn?

a, 2x+3y=-1 b, 0x+5y=2 c, -3x+0y=0 d, 2x+\(\sqrt{y}\)=5

2. \(\left\{{}\begin{matrix}x\in R\\y=-\dfrac{1}{2}x+1\end{matrix}\right.\)là nghiệm của phương trình:

a, 2x+y=1 b, x+2y=-21 c, x+2y=2 d, 2x+y=2

3. Cặp số nào sau đây là nghiệm của hpt \(\left\{{}\begin{matrix}2x+3y=-8\\3x-2y=1\end{matrix}\right.\)?

a, (-2;-1) b, (-1;-2) c, (2,-1) d, (1;-2)

4. Cho hpt \(\left\{{}\begin{matrix}x+ay=1\\bx-y=-a\end{matrix}\right.\). Tìm giá trị của a,b để hpt có nghiệm là (2;1)

a, a=1;b=-1 b, a=-1;b=-1 c, a=1;b=1 d, a=-1; b=1

5. Tọa độ giao điểm của 2 đường thẳng y=x-1 và y= -x+2 là:

a, \(\left(\dfrac{3}{2};\dfrac{1}{2}\right)\) b, \(\left(\dfrac{3}{2};-\dfrac{1}{2}\right)\) c,\(\left(-\dfrac{3}{2};\dfrac{1}{2}\right)\) d, \(\left(\dfrac{3}{2};0\right)\)

6. Xác định m để hpt \(\left\{{}\begin{matrix}4x+8y=-9\\\left(m+1\right)x+my=3\end{matrix}\right.\) vô nghiệm.

a, m=\(\dfrac{-8}{3}\) b, m≠\(\dfrac{-8}{3}\) c, m=-2 d, m≠-2

7. Nối mỗi hpt với nghiệm của nó

hệ phương trình nối nghiệm
a,\(\left\{{}\begin{matrix}x-5y=-6\\5x-7y=-12\end{matrix}\right.\) 1, (-2;-3)
b,\(\left\{{}\begin{matrix}3x+4y=-18\\x-7y=19\end{matrix}\right.\) 2, (-2;2)
c,\(\left\{{}\begin{matrix}x-\dfrac{1}{3}y=-3\\\dfrac{x}{2}+\dfrac{y}{4}=1\end{matrix}\right.\) 3, (-1;1)
d,\(\left\{{}\begin{matrix}2x-5y=-14\\3x-4y=-14\end{matrix}\right.\) 4, (-1;6)
5, (-2;-2)

GIÚP VỚI HELP ME

3
17 tháng 1 2019

Câu 1: B và C

Câu 2: C

Câu 3: B

Câu 4: D

Câu 5: A

Câu 6: C

Câu 7:

A với 3

B với 1

C với 4

D với 2

CHÚC BẠN HỌC TỐT!!!

22 tháng 1 2019

câu 1 :D

câu 2 : C

câu 3 :B

câu 4 :B

Câu 5 A

câu 6 A ta ko chắc câ này lắm

câu 7 a-3;b-1;c-4;d-5

15 tháng 5 2018

Bạn coi lại câu b) đi nhé ( vì HPT chỉ có 1 dấu " = " thôi )

Ta có :

\(VT=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{4}{2ab}+\dfrac{4}{2bc}+\dfrac{4}{2ca}\)

Theo BĐT Cauchy schwarz dưới dạng engel ta có :

\(VT\ge\dfrac{\left(1+1+1+2+2+2\right)^2}{\left(a+b+c\right)^2}=\dfrac{81}{1}=81\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{3}\)

12 tháng 9 2018

nếu dùng kỹ thuật chọn điểm rơi và đánh giá từ TBC sang TBN thì làm kiểu j v bn

Bìa 1: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\) Bài 2: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b)...
Đọc tiếp

Bìa 1: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

Bài 2: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

Bài 3: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{3}{8}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

Bài 4: Cho hệ phương trình \(\left\{{}\begin{matrix}\left(3a-2\right)x+2\left(2b+1\right)y=30\\\left(a+2\right)x-2\left(3b-1\right)y=-20\end{matrix}\right.\) Tìm các giá trị của a,b để hệ phương trình có nghiệm (3;-1)

cảm ơn mn trước ạ ! hehe

2
12 tháng 1 2019

3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))

Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)

b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)

31 tháng 12 2022

Bài 4:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)

=>9a-6-4b-2=30 và 3a+6+6b-2=-20

=>9a-4b=38 và 3a+6b=-20+2-6=-24

=>a=2; b=-5

8 tháng 1 2018

a) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}

b) Đk xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)

Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}

c) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}

d) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

Vậy S={(0,4;-4)}

e) ĐKXĐ : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....

26 tháng 11 2018

Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{ab+ac+bc}{abc}=0\Leftrightarrow ab+ac+bc=0\)

Vì a,b>0\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}>0\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

Suy ra \(\dfrac{1}{c}< 0\Leftrightarrow c< 0\)

\(\Leftrightarrow c+\left|c\right|=0\Leftrightarrow c+\sqrt{c^2}=0\Leftrightarrow c+\sqrt{ab+ac+bc+c^2}=0\)(vì ab+ac+bc=0)\(\Leftrightarrow c+\sqrt{a\left(b+c\right)+c\left(b+c\right)}=0\Leftrightarrow c+\sqrt{\left(b+c\right)\left(a+c\right)}=0\Leftrightarrow2c+2\sqrt{\left(b+c\right)\left(a+c\right)}=0\Leftrightarrow a+b=a+b+2c+2\sqrt{\left(b+c\right)\left(a+c\right)}\Leftrightarrow a+b=\left(b+c\right)+2\sqrt{\left(b+c\right)\left(a+c\right)}+\left(a+c\right)\Leftrightarrow a+b=\left(\sqrt{b+c}+\sqrt{a+c}\right)^2\Leftrightarrow\sqrt{a+b}=\sqrt{\left(\sqrt{b+c}+\sqrt{a+c}\right)^2}\Leftrightarrow\sqrt{a+b}=\sqrt{b+c}+\sqrt{a+c}\)

8 tháng 11 2018

Ta có \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ac+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(tm\right)\\a=b=c\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a+b+c=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\)

Ta có \(P=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\Leftrightarrow abc.P=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b+c-a\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)=b\left(a-b\right)\left(a-c\right)-c\left(b-a\right)\left(c-a\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\Leftrightarrow P=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}\)\(Q=\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).Q=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-\left(c+b\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-c\left(a-b\right)\left(c-a\right)-b\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(c-a\right)\left(2b-c-a\right)-b\left(a-b\right)\left(2c-a-b\right)=c\left(c-a\right)3b-b\left(a-b\right)3c=3bc\left(b+c-2a\right)=-9abc\Leftrightarrow Q=\dfrac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)Vậy \(P.Q=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}.\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=9\)