Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi dãy số trên 1 tí nha, biến nó thành dãy tương đương là: \(\frac{2}{2},\frac{2}{6},\frac{2}{12},\frac{2}{20},...,\frac{2}{462}\)
Đến đây ta thấy dãy có quy luật là: \(\frac{2}{1.2},\frac{2}{2.3},\frac{2}{3.4},\frac{2}{4.5},...,\frac{2}{21.22}\)
Vậy só ở vị trí thứ 20 là: \(\frac{2}{20.21}=\frac{1}{210}\)
Dấu \(.\)là dấu nhân đó nha :)))
Bải toán tìm x biết: \(\frac{1}{2}< \frac{x}{6}< \frac{3}{4}\)
Qui đồng mẫu số: mẫu số chung là 12.
\(\frac{1\times6}{2\times6}< \frac{x\times2}{6\times2}< \frac{3\times3}{4\times3}\)
\(\frac{6}{12}< \frac{x\times2}{12}< \frac{9}{12}\)
Suy ra: \(6< x\times2< 9\)
=> \(x=4\)
Phân số cần tìm là: \(\frac{4}{6}\)
Gọi tử số của phân số đó là x
\(\Rightarrow\frac{1}{2}< \frac{x}{6}< \frac{3}{4}\)
\(\Rightarrow\frac{6}{12}< \frac{2x}{12}< \frac{9}{12}\)
\(\Rightarrow6< 2x< 9\)
mà 2x là số chẵn
mặt khác ta có 2x = { 7; 8 }
=> 2x = 8
=> x = 4
Vậy, phân số cần tìm là 4/6
a) - ta có :1/5=8/40 ; 3/8=15/40
8/40<9/40;10/40;11/40;12/40;13/40;14/40<15/40
\(\Rightarrow\) 6 phân số tối giản lớn hơn 1/5 và nhỏ hơn 3/8 là:9/40;1/4;11/40;3/10;13/40;7/20
b) - ta có: 2/5 =12/30 ; 3/5 = 18/30
12/30<13/30;14/30;15/30;16/30;17/30<18/30
\(\Rightarrow\)5p/số khác nhau nằm giữa 2 p/số 1/5 và 3/8 là: 12/30;13/30;14/30;15/30;16/30;17/30
- ta có: 1 - 5/7 =2/7 1 - 5/6 = 1/6
2/7 =12/42 ; 1/6 = 6/42
12/42>11/42;10/42;9/42;8/42;7/42>6/42
\(\Rightarrow\)5p/số khác nhau nằm giữa 2 p/số 5/7 và 5/6 là: 11/42;10/42;9/42;8/42;7/42
c)
\(1\frac{1}{3}\cdot\frac{1}{8}\cdot1\frac{1}{15}\cdot1\frac{1}{24}\cdot1\frac{1}{35}\)
= 4/3 x 9/8 x 16/15 x 25/24 x 36/35
= (4/3 x 9/8) x (16/15 x 25/24) x 36/35
= 3/2 x 10/9 x 26/35
= (3/2 x 10/9) x 36/35
= 5/3 x 36/35
= 12/7
Câu 1:Quy luật là n*n-1
Câu 2
Giải
Đổi:1 giờ=60 phút
60 phút gấp 5 phút số lần là
60:5=12(lần)
60 phút người đó đi được là:
350*12=4200(m)
Đổi:4200m=4,2 km
Đ/s:4,2 km
Câu 3:
Tự nghĩ đi
Có :
8=3+5
23=8+5.2
68=23+5.3
203=68+5.4
=> Số tiếp theo là 203+5.5=228
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
\(a.5,6,10,11,15,18,14,16,19\)
\(b.6,9,13,18,24,31,39\)
\(c.1,3,9,27,81\)
\(d.1,3,6,8,16,28,42,62\)
Ở đây mẫu số cộng 4 rồi dần dần thêm 2 là +6 , +8 , ...
Từ phân số 1/12 đến 1/20 là +8.
Vậy những phận số còn thiếu là 1/30 , 1/42 , 1/56 , 1/72 .
Nhầm từ phân là phận.