Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải:
Lưu ý: Đề thiếu dữ kiện AD = AB nhé.
tham khảo!
Lấy M là trung điểm BC ta sẽ chứng minh A, H, M thẳng hàng.
Trên tia đối của tia MA lấy điểm F sao cho MA = MF. K là giao điểm của AM và DE, ta sẽ chứng minh K trùng với H.
Ta có: △△BMF = △△CMA (c.g.c) ⇒⇒ BF = CA = AE và ˆFBM=ˆACMFBM^=ACM^
⇒ BF // AC ⇒ˆABF+ˆBAC=1800⇒ABF^+BAC^=1800 (1)
Lại có: ˆBAD=ˆCAE=900BAD^=CAE^=900
⇒ˆDAE+ˆBAC=900+ˆBAE+ˆBAC=900+900=1800⇒DAE^+BAC^=900+BAE^+BAC^=900+900=1800 (2)
Từ (1) và (2) suy ra: ˆABF=ˆDAEABF^=DAE^.
Từ giả thiết cùng với chứng minh trên ta lại có: AB = DA và BF = AE
⇒ △△ABF = △△DAE ⇒ˆBAF=ˆADE⇒BAF^=ADE^
Lại có: ˆBAF+ˆDAF=ˆBAD=900⇒ˆADE+ˆDAF=900BAF^+DAF^=BAD^=900⇒ADE^+DAF^=900
⇒ˆDKA=900⇒⇒DKA^=900⇒ AM ⊥⊥ DE. suy ra A,M, H thẳng hàng
Ta có điều phải chứng minh.
SAMN = \(\dfrac{1}{2}\) SAMC (vì hai tam giác có chung đường cao hạ từ đỉnh M xuống đáy AC và AN = \(\dfrac{1}{2}\)AC)
SAMC = \(\dfrac{3}{4}\) SABC (vì hai tam giác có chung đường cao hạ từ đỉnh C xuống đáy AB và (AM = \(\dfrac{3}{4}\) AB)
⇒SAMN = SABC \(\times\) \(\dfrac{3}{4}\) \(\times\) \(\dfrac{1}{2}\) = \(\dfrac{3}{8}\) \(\times\) SABC
SABC = 48 : \(\dfrac{3}{8}\) = 128 (cm2)
Kết luận diện tích tam giác ABC là 128 cm2
Áp dụng định lính Pytago đảo, ta có:
30=\(\sqrt{24^2+18^2}\)
⇒ 30=30(đúng)30=30(đúng)
Vậy bộ ba cạnh trên là 3 cạnh của 1 tam giác vuông
Cái này mk tra mạng thôi chứ ko phải mk làm đâu với bài này hình như ko phải bài lớp 6 hay sao ý
Bài 1:
a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOm}< \widehat{xOy}\left(30^0< 60^0\right)\)
nên tia Om nằm giữa hai tia Ox và Oy
\(\Leftrightarrow\widehat{xOm}+\widehat{yOm}=\widehat{xOy}\)
\(\Leftrightarrow\widehat{yOm}=\widehat{xOy}-\widehat{xOm}=60^0-30^0=30^0\)
Ta có: tia Om nằm giữa hai tia Ox và Oy(cmt)
mà \(\widehat{xOm}=\widehat{yOm}\left(=30^0\right)\)
nên Om là tia phân giác của \(\widehat{xOy}\)(đpcm)
Học tốt
~ Hok tốt ~
#Gumball