Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{AB}{AC}=\sqrt{3}\)
\(\Leftrightarrow HB=3\cdot HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow3\cdot HC=12\)
hay HC=4(cm)
\(\Leftrightarrow HB=\dfrac{4}{3}\left(cm\right)\)
\(\Leftrightarrow BC=\dfrac{16}{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{8}{3}\left(cm\right)\\AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\end{matrix}\right.\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=6(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)
\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)
Xin chào bạn. Rất vui đc làm quen với bạn. Chúc bạn chăm chỉ học tập như hiện tại nhé!!
Tu ke \(AH\perp BC\) Dat BH la x >0
thi Xet tam giac AHB vuong tai H co
AH=\(\sqrt{2-x^2}\) cm (DL PYTAGO)
=> CH = \(1+\sqrt{3}-x\) cm
Xet tam giac AHC vuong tai H co
\(AC^2=AH^2+HC^2\) Dinh Ly Pytago
<=> \(4=2-x^2+\left(1+\sqrt{3}-x\right)^2\)
<=> \(4=2-x^2+1+3+x^2+2\sqrt{3}-2x-2\sqrt{3}x\)
<=> \(2\sqrt{3}-2\sqrt{3}x-2x+2=0\)
<=> \(2\sqrt{3}\left(1-x\right)-2\left(1-x\right)=0\)
<=>\(\left(2\sqrt{3}-1\right)\left(1-x\right)=0\)
<=> x=1
Suy ra \(AH=\sqrt{2-1}=1\)
cos B =\(\frac{BH}{AB}=\frac{1}{\sqrt{2}}\) => \(\widehat{B}=45^o\)
cos C=\(\frac{HC}{AC}=\frac{1+\sqrt{3}-1}{2}=\frac{\sqrt{3}}{2}=>\widehat{C}=30^o\)
Suy ra \(\widehat{A}=180^o-45^o-30^0=105^0\)
Study well