K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

16 tháng 4 2017

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

16 tháng 4 2017

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

31 tháng 12 2017

A = 1 + 7^9/1+7+7^2+....+7^8

   = 1 + 7^9-1/1+7+....+7^8 + 1/1+7+....+1/7^8

   = 1 + 7-1 + 1/1+7+....+7^8

   = 7 + 1/1+7+....+7^8

Tương tự : B = 5 + 1/1+5+....+5^8

Vì 1/1+5+.....+5^8 < 1 => B < 5+1 = 6

Mà A > 6 => A > B

k mk nha

31 tháng 12 2017

Bạn viết phân số được ko bạn mình đọc ko hiểu

25 tháng 3 2019

ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)

\(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)

tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)

Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)\(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)

=> A > B 

20 tháng 9 2017

a, 

A=1+3+32+33+34+35+36

=> 3A=3+32+33+34+35+36+37

=> 3A-A=(3+32+33+34+35+36+37)-(1+3+32+33+34+35+36)

=> 2A=37-1

=> A=37-1/2

Vì (37-1)/2   < 37-1 

=> A < B

b, C=1+2+22+...+22001+22002

=> 2C=2+22+23+....+22002+22003

=> 2C-C=(2+22+23+...+22002+22003)-(1+2+22+...+22002)

=> C=22003-1

Vì 22003-1 = 22003-1

=> C = D.

20 tháng 9 2017

a) \(A=1+3+3^2+...+3^6\)

\(\Rightarrow3A=3+3^2+...+3^7\)

\(\Rightarrow3A-A=3+3^2+...+3^7-1-3-3^2-...-3^6\)

\(\Rightarrow2A=3^7+2\)

\(\Rightarrow A=\frac{3^7+2}{2}\)

Vì \(3^7-1>\frac{3^7+2}{2}\)=> A < B.

b) Câu này thì nhân C cho 2 và làm tương tự như câu trên nha.

1 tháng 3 2019

xét A và B có: số mũ từ 2 đến 9 giống nhau; mẫu đều cộng 1

=> Ta chỉ có thể so sánh phần cơ số

vì 7>3 => 7 mũ n>3 mũ n

=> A lớn hơn B

27 tháng 7 2017

ta có :

ts của a=tử số của b

mà ms của a<ms của b

suy ra a>b

27 tháng 7 2017

sai bét

30 tháng 3 2020

cách này mình tự nghĩ 

\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)

\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)

\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)

\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)

mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)