Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: \(\left(4,1\right)^0=1\)
Mà: 0 < 2,7 => \(\left(4,1\right)^{2,7}>1\)
b)Ta thấy: \(\left(0,2\right)^{0,3}< 0,2^0\)
\(\Rightarrow\left(0,2\right)^{0,3}< 1\)
c) Ta thấy: \(\left(0,7\right)^{3,2}< \left(0,7\right)^0\)
\(\Rightarrow\left(0,7\right)^{3,2}< 1\)
d) \(\left(\sqrt{3}\right)^{0,4}>\left(\sqrt{3}\right)^0\)
\(\Rightarrow\left(\sqrt{3}\right)^4>1\)
a. \(0,7^{\frac{\sqrt{5}}{2}}\) và \(0,7^{\frac{1}{3}}\).
Ta có : \(\begin{cases}\left(\frac{\sqrt{5}}{6}\right)^2=\frac{5}{36}>\frac{4}{36}=\left(\frac{1}{3}\right)^2\Rightarrow\frac{\sqrt{5}}{6}>\frac{1}{3}\\0< 0,7< 1\end{cases}\)
\(\Rightarrow0,7^{\frac{\sqrt{5}}{6}}< 0,7^{\frac{1}{3}}\)
b. \(2^{\sqrt{3}}\) và \(3^{\sqrt{2}}\)
Ta có : \(\begin{cases}\left(2^{\sqrt{3}}\right)^{\sqrt{3}}=2^3=8\\\left(3^{\sqrt{2}}\right)^{\sqrt{3}}=3^{\sqrt{6}}>3^2=9\end{cases}\)
\(\Rightarrow\left(2^{\sqrt{3}}\right)^{\sqrt{3}}< \left(3^{\sqrt{2}}\right)^{\sqrt{3}}\)
\(\Rightarrow2^{\sqrt{3}}< 3^{\sqrt{2}}\)
c. \(\log_{0.4}\sqrt{2}\) và \(\log_{0,2}0,34\)
Ta có : \(\begin{cases}0< 0,4< 1;\sqrt{2}>1\Rightarrow\log_{0,4}\sqrt{2}< 0\\0< 0,2< 1;0< 1< 0,34\Rightarrow\log_{0,2}0,3>0\end{cases}\)
\(\Rightarrow\log_{0,4}\sqrt{2}< \log_{0,2}0,34\)
9.
\(5^{2x}-3.5^{x+2}+32< 0\)
\(\Leftrightarrow\left(5^x\right)^2-75.5^x+32=0\)
Đặt \(5^x=t\Rightarrow t^2-75t+32< 0\)
10.
\(\overrightarrow{BA}=\left(4;-1;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(4;-1;7\right)\) là 1 vtcp
Đáp án C là đáp án duy nhất đúng về vtcp, nhưng lại sai về điểm mà đường thẳng đi qua, nên cả 4 đáp án đều sai :)
Pt chính tắc đúng phải là: \(\frac{x+3}{4}=\frac{y}{-1}=\frac{z+4}{7}\)
11.
\(\overrightarrow{a}\perp\overrightarrow{b}\Leftrightarrow\overrightarrow{a}.\overrightarrow{b}=0\)
\(\Leftrightarrow2+m-3=0\Rightarrow m=1\)
5.
\(R=a;h=2a\)
\(\Rightarrow S=2\pi R.h=4\pi a^2\)
6.
\(\left(x+y\right)+\left(2x-y\right)i=3-6i\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
7.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|2.1+2.2+4-1\right|}{\sqrt{2^2+2^2+1^2}}=3\)
Pt mặt cầu: \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=9\)
8.
\(x^4-3x^2-5=0\)
Đặt \(x^2=t\ge0\Leftrightarrow t^2-3t-5=0\) (1)
\(t_1t_2=-5< 0\Rightarrow\left(1\right)\) có 2 nghiệm trái dấu => có đúng 1 nghiệm dương => pt đã cho có 2 nghiệm pb
\(\Rightarrow\) Đồ thị hs cắt trục hoành tại 2 điểm
a) \(\left(3,1\right)^{7,2}\) và \(\left(4,3\right)^{7,2}\)
Thấy 7,2 = 7,2 (số mũ)
Mà: \(3,1< 4,3\) (cơ số)
Vậy: \(\left(3,1\right)^{7,2}< \left(4,3\right)^{7,2}\)
b) \(\left(\dfrac{10}{11}\right)^{2,3}\) và \(\left(\dfrac{12}{11}\right)^{2,3}\)
Thấy 2,3 = 2,3 (số mũ)
Mà: \(\dfrac{10}{11}< \dfrac{12}{11}\)
Vậy: \(\left(\dfrac{10}{11}\right)^{2,3}\)\(< \) \(\left(\dfrac{12}{11}\right)^{2,3}\)
c) \(\left(0,3\right)^{0,3}\) và \(\left(0,2\right)^{0,3}\)
Thấy 0,3 = 0,3 (số mũ)
Mà: 0,3 > 0,2 (cơ số)
Vậy: \(\left(0,3\right)^{0,3}>\left(0,2\right)^{0,3}\)