\(\left(3,1\right)^{7,2}\) và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

a) \(\left(3,1\right)^{7,2}\)\(\left(4,3\right)^{7,2}\)

Thấy 7,2 = 7,2 (số mũ)

Mà: \(3,1< 4,3\) (cơ số)

Vậy: \(\left(3,1\right)^{7,2}< \left(4,3\right)^{7,2}\)

b) \(\left(\dfrac{10}{11}\right)^{2,3}\)\(\left(\dfrac{12}{11}\right)^{2,3}\)

Thấy 2,3 = 2,3 (số mũ)

Mà: \(\dfrac{10}{11}< \dfrac{12}{11}\)

Vậy: \(\left(\dfrac{10}{11}\right)^{2,3}\)\(< \) \(\left(\dfrac{12}{11}\right)^{2,3}\)

c) \(\left(0,3\right)^{0,3}\)\(\left(0,2\right)^{0,3}\)

Thấy 0,3 = 0,3 (số mũ)

Mà: 0,3 > 0,2 (cơ số)

Vậy: \(\left(0,3\right)^{0,3}>\left(0,2\right)^{0,3}\)

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

1 tháng 4 2017

a) Ta thấy: \(\left(4,1\right)^0=1\)

Mà: 0 < 2,7 => \(\left(4,1\right)^{2,7}>1\)

b)Ta thấy: \(\left(0,2\right)^{0,3}< 0,2^0\)

\(\Rightarrow\left(0,2\right)^{0,3}< 1\)

c) Ta thấy: \(\left(0,7\right)^{3,2}< \left(0,7\right)^0\)

\(\Rightarrow\left(0,7\right)^{3,2}< 1\)

d) \(\left(\sqrt{3}\right)^{0,4}>\left(\sqrt{3}\right)^0\)

\(\Rightarrow\left(\sqrt{3}\right)^4>1\)

GV
22 tháng 4 2017

a) \(2^{-2}=\dfrac{1}{2^2}< 1\)

b) \(\left(0,013\right)^{-1}=\dfrac{1}{0,013}>1\)

c) \(\left(\dfrac{2}{7}\right)^5=\dfrac{2^5}{7^5}< 1\)

d) \(\left(\dfrac{1}{2}\right)^{\sqrt{3}}=\dfrac{1}{2^{\sqrt{3}}}< \dfrac{1}{2^{\sqrt{1}}}=\dfrac{1}{2}< 1\)

e) vì \(0< \dfrac{\pi}{4}< 1\)

Suy ra \(\left(\dfrac{\pi}{4}\right)^{\sqrt{5}-2}=\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{5}}}{\left(\dfrac{\pi}{2}\right)^2}>\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{4}}}{\left(\dfrac{\pi}{4}\right)^2}=1\)

f) Vì \(0< \dfrac{1}{3}< 1\)

Nên \(\left(\dfrac{1}{3}\right)^{\sqrt{8}-3}>\left(\dfrac{1}{3}\right)^{\sqrt{9}-3}=\left(\dfrac{1}{3}\right)^0=1\)

GV
22 tháng 4 2017

a) \(\left(\sqrt{17}\right)^6=\sqrt{\left(17^3\right)^2}=17^3=4913\)

\(\left(\sqrt[3]{28}\right)^6=\sqrt[3]{\left(28^2\right)^3}=28^2=784\)

=> \(\left(\sqrt{17}\right)^6>\left(\sqrt[3]{28}\right)^6\)

=> \(\sqrt{17}>\sqrt[3]{28}\)

GV
22 tháng 4 2017

b) \(\left(\sqrt[4]{13}\right)^{20}=13^5=371293\)

\(\left(\sqrt[5]{23}\right)^{20}=23^4=279841\)

=> \(\sqrt[4]{13}>\sqrt[5]{23}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2017

Lời giải:

Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)

\(\Rightarrow 13^t=3^t+4^t+12^t\)

\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)

Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)

Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)

Đáp án B

20 tháng 10 2017

cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)

26 tháng 3 2016

a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)

b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)

c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)

d)  Vì \(\frac{1}{\pi}<1\)  và \(1,4<\sqrt{2}\)  nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)