Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các góc trong một tam giác được gọi là góc trong. Các góc kề bù với góc trong được gọi là góc ngoài. Góc ngoài thì bằng tổng các góc trong không kề bù với nó. Mỗi tam giác chỉ có 3 góc trong và 6 góc ngoài.
Nhận xét: Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: G ko cách đều ba cạnh của ΔABC vì G ko phải là tâm đường tròn nội tiếp tam giác
1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.
2. -Có 3 trường hợp bằng nhau của 2 tam giác:
+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).
+Trường hợp 2: cạnh-góc-cạnh(c.g.c).
+Trường hợp 3: góc-cạnh-góc(g.c.g)
3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông
4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau
-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau
+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân
- Cách chứng minh 1 tam giác là tam giác cân:
+ Chứng minh tam giác có 2 cạnh bằng nhau
+ Chứng minh tam giác có 2 góc bằng nhau
+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)
5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau
- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ
+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều
+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều
- Cách chứng minh 1 tam giác là tam giác đều:
+Chứng minh tam giác có 3 cạnh bằng nhau
+Chứng minh tam giác có 3 góc bằng nhau
+Chứng minh tam giác có 2 góc có 60 độ
+Chứng minh tam giác cân có 1 góc có 60 độ
6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông
- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông
1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.
2. -Có 3 trường hợp bằng nhau của 2 tam giác:
+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).
+Trường hợp 2: cạnh-góc-cạnh(c.g.c).
+Trường hợp 3: góc-cạnh-góc(g.c.g)
3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông
4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau
-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau
+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân
- Cách chứng minh 1 tam giác là tam giác cân:
+ Chứng minh tam giác có 2 cạnh bằng nhau
+ Chứng minh tam giác có 2 góc bằng nhau
+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)
5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau
- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ
+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều
+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều
- Cách chứng minh 1 tam giác là tam giác đều:
+Chứng minh tam giác có 3 cạnh bằng nhau
+Chứng minh tam giác có 3 góc bằng nhau
+Chứng minh tam giác có 2 góc có 60 độ
+Chứng minh tam giác cân có 1 góc có 60 độ
6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông
- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông
a)vì góc B=góc C
mà góc IBC=1/2 góc EBC và ICB=1/2 góc DCB
nên suy ra IBC=ICB suy ra IBC là tam giác cân
b)xét tam giác ECB và tam giác DBC có
BC là cạnh chung
góc ECB= góc DBC(câu a)
góc B= góc C
suy ra tam giác ECB = tam giác DBC (g.c,g)
cho cái k xong sẽ làm câu c và d
Ta có: ΔABD vuông cân tại B(gt)
nên \(\widehat{DAB}=45^0\)(Số đo của một góc nhọn trong ΔABD vuông cân tại B)
Ta có: ΔACE vuông cân tại C(gt)
nên \(\widehat{EAC}=45^0\)(Số đo của một góc nhọn trong ΔACE vuông cân tại C)
Ta có: ΔABC đều(gt)
nên AB=AC=BC và \(\widehat{BAC}=60^0\)(Số đo của các cạnh và các góc trong ΔABC đều)(1)
Ta có: \(\widehat{DAE}=\widehat{DAB}+\widehat{BAC}+\widehat{EAC}\)
\(\Leftrightarrow\widehat{DAE}=60^0+45^0+45^0=150^0\)
Ta có: ΔADB vuông cân tại B(gt)
nên AB=BD(hai cạnh bên)(2)
Ta có: ΔACE vuông cân tại C(gt)
nên AC=CE(hai cạnh bên)(3)
Từ (1), (2) và (3) suy ra AB=BC=AC=CE=DB
Xét ΔABD vuông tại B và ΔACE vuông tại C có
AB=AC(cmt)
DB=EC(cmt)
Do đó: ΔABD=ΔACE(hai cạnh góc vuông)
hay AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{DAE}}{2}\)(Số đo của các góc ở đáy trong ΔADE cân tại A)
hay \(\widehat{ADE}=15^0\) và \(\widehat{AED}=15^0\)
Vậy: Số đo các góc nhọn trong ΔADE là 150
A.đúng
B.đúng
C.sai
D.tam giác đều có thể là tam giác cân:đúng
hok tốt nha
TÍNH CHẤT TAM GIÁC CÂN
Trong một tam giác cân, hai góc ở đáy bằng nhau
Nếu trong một tam giác có hai góc bằng nhau thì tam giác đó gọi là tam giác cân
TAM GIÁC ĐỀU tự mà lật sách đê, mỏi tay rồi
1. TAM GIÁC CÂN :
Định nghĩa :
Tam giác cân là tam giác có hai cạnh bằng nhau.
Định lí 1 :
Tam giác cân có hai góc đáy bằng nhau.
Định lí 2 :
Tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
2. TAM GIÁC ĐỀU :
Định nghĩa :
Tam giác đều là tam giác có ba cạnh bằng nhau.
Tính chất :
Nếu Tam giác cân có một góc bằng 600 thì tam giác đó là tam giác đều.
3. TAM GIÁC VUÔNG :
Định nghĩa :
Tam giác vuông là tam giác có một góc vuông.
Định lí Py-ta-go thuận :
Trong một tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
Định lí Py-ta-go đảo :
Nếu một tam giác có bình phương một cạnh bằng tổng bình phương hai cạnh còn lại thì tam giác đó là tam giác vuông.