K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

gọi 3 số đó lần lượt là :a;a+1;a+2 Ta có:

     a+(a+1)+(a+2)=3a+3 chia hết cho 3

suy ra trong 3 số phải có 1 số chia hết cho 3.Chắc z,mk hok kém toán thông cảm

20 tháng 6 2017

Gọi 3 số đó là a;a+1 và a+3(aEN).

Vì aEN=>a=3k hoặc 3k+1 hoặc 3k+2(kEN).

Nếu a=3k=>a chia hết cho 3(thỏa mãn).

Nếu a =3k+1=>a+2=3k+3=3(k+1) chia hết cho 3 (thỏa mãn).

Nếu a=3k+2=>a+1=3k+3=3(k+1) (thỏa mãn).

=>Luôn có 1 số chia hết cho 3(đpcm).

Vậy bài toán đc cminh.

15 tháng 10 2015

3 số tự nhiên liên tiếp sẽ có dạng a;a+1 và a+2

Tổng của 3 số là:a+a+1+a+2=3*a +3=3*(a+1) (chia hết cho 3)

Các số có 3 chữ số bắt đầu từ 100,kết thúc là số 999

=>Số số có 3 chữ số là: (999-100):1 +1=900 số

8 tháng 7 2017

a) Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh .

Nếu a không chia hết cho 2 thì  a = 2k + 1 ( k ∈ N)

Suy ra : a + 1 = 2k + 1 + 1

Ta có : 2k  ⋮  2 ; 1 + 1 = 2  ⋮  2

Suy ra  ( 2k +1 +1 ) ⋮  2 hay ( a+ 1) ⋮  2

Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1  hoặc  a = 3k + 2 ( k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3  ⋮ 3

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3  ⋮ 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.

8 tháng 7 2017

a) Gọi hai số tự nhiên liên tiếp là a , a + 1

Nếu a chia hết cho 2 thì bài toán đã được giải

Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán đã được giải

Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3

Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3

Bài này mik học rồi nên mik chắc chắn đúng luôn

19 tháng 1 2016

Gọi 2 số tự nhiên liên tiếp là n và n+1.Gọi d thuộc Ư(n;n+1)

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 2 số tự nhiên liên tiếp thì nguyên tố cùng nhau

19 tháng 1 2016

Vì 2 số tự nhiên liên tiếp ko chia hết cho nhau

16 tháng 10 2017

Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp

\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm

\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k +  2 hoặc n = 5k + 3 hoặc n = 5k + 4

- Với n = 5k + 1   => n + 4 = 5k + 5 \(⋮\)5

- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5

- Với n = 5k + 3 => n + 2 = 5k + 5  \(⋮\)5

- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5

Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5

16 tháng 10 2017

Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4

Ta có:

a+a+1+a+2+a+3+a+4

= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )

= 5.a+10

= 5. ( a + 2 ) chia hết cho 5

Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5

23 tháng 3 2017

dựa vào dấu hiệu chia hết cho 3 là ra mà

27 tháng 6 2016

Theo anh cách giải thế này:

3 số tự nhiên liên tiếp luôn luôn có dạng:

k+1,k+2,k+3

Từ đây ta có:

+Nếu k chia hết cho 3 thì k+3 chia hết cho 3

+Nếu k chia 3 dư 1 thì k+2 chia hết cho 3

+Nếu k chia 3 dư 2 thì k+1 chia hết cho 3

Vậy trong 3 số tự nhiên liên tiếp luôn tồn tại 1 số chia hết cho 3

Chúc em học tốt^^

20 tháng 11 2016

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 

Ta xét 3 trường hợp :

TH1: a chia cho 3 dư 0

Suy ra : a chia hết cho 3

TH2: a chia cho 3 dư 1 

Ta có : a = 3q + 1

a + 2 = 3q +1 + 2

a + 2 = 3q + 3

a + 2 = 3q + 3 .1

a + 2 = 3.(q + 1 )

Suy ra : a +2 chia hết cho 3 

TH3 : a chia cho 3 dư 2

Ta có : a = 3q + 2

a + 1 = 3q +2 + 1

a + 1 = 3q + 3

a + 1 = 3q + 3 .1

a + 1 = 3.(q + 1)

Suy ra : a + 1 chia hết cho 3 

Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .

20 tháng 11 2016

gọi 3 số đó là a,a+1,a+2(.\(a\in N\))

Khi chia a.(a+1).(a+2) cho 3 sẽ có 3 trường hợp xảy ra:3k, 3k+1, 3k+2 ( \(k\in N\))

+ Nếu a = 3k  => a.(a+1).(a+2) chia hết cho 3 

+ Nếu a = 3k +1 => a+2=3k+3 chia hết cho 3 => a.(a+1).(a+2) chia hết cho 3 

+ Nếu a = 3k +2 => a+1=3k+3 chia hết cho 3 =>a.(a+1).(a+2) chia hết cho 3 

\(\Rightarrow\)Từ  trên ta thấy với 3k, 3k+1, 3k+2 ( \(k\in N\)) thì sẽ có một số chia hết cho 3