Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a là 1 hàng đẳng thức bạn nhé
Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
b) p^2-1=(p-1)(p+1)
Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2
+ Nếu p:3 dư 1 thì p-1 chia hết cho 3
+ Nếu p:3 dư 2 thì p+1 chia hết cho 3
=> p^2-1 chia hết cho 3.
Do p>3, p NT=> p lẻ=> p=2k+1
Thay vào đc p^2-1=2k(2k+2)
=4k(k+1)
Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8
Tóm lại p^2-1 chia hết cho 24 do (3,8)=1
2) p^4-1=(p^2-1)(p^2+1)
Theo câu a thì p^2-1 chia hết cho 24
Do p lẻ (p là SNT >3)
=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ
=> p^2+1 chia hết cho 2
=> p^4-1 chia hết cho 48 (đpcm).
\(S=1+\left(2-3+5+6-.....-998+999\right)+1000\)
\(S=1001+S1\)
VOI \(S1=O\)
VAY \(S\)CHIA HET 11
Gọi 4 số lẻ liên tiếp là 2k+1, 2k+3, 2k+5, 2k+7 ( k thuộc tập số nguyên)
Ta có: 2k+1+2k+3+2k+5+2k+7=8k+16
=8(k+2) chia hết cho 8 vì 8 chia hết cho 8 => đpcm
Gọi 4 số chẵn liên tiếp là 2k, 2k+2, 2k+4, 2k+6
Ta có: 2k+2k+2+2k+4+2k+6=8k+12 không chia hết cho 8 vì 12 không chia hết cho 8 => đpcm
Vì 8k chi hết cho 8 ( do 8 chia hết cho 8) nên 12 chia 8 dư bao nhiêu thì tổng chia 8 dư bấy nhiêu
Ta có 12 chia 8 dư 4 nên tổng 4 số chẵn liên tiếp cũng sẽ chia 8 dư 4.
Đặt \(A=5^1+5^2+5^3+....+5^{2010}\)
\(A=\left(5^1+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2008}+5^{2009}+5^{2010}\right)\)
\(A=5.\left(1+5+5^2\right)+5^4.\left(1+5+5^2\right)+...+5^{2008}.\left(1+5+5^2\right)\)
\(A=\left(1+5+5^2\right).\left(5+5^4+...+5^{2008}\right)\)
\(A=31.\left(5+5^4+....+5^{2008}\right)⋮31\)
một hình chữ nhật có chiều dài 18 cm . Chiều rộng bằng 1/2 chiều dài . Tính diện tích của hình chủ nhật đó .