Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Bất phương trình x > 3 có VT = x; VP = 3
Nghiệm của bất phương trình x > 3 là tập hợp các số lớn hơn 3, {x|x > 3}
- Bất phương trình 3 < x có VT = 3; VP = x
Nghiệm của bất phương trình 3 < x là tập hợp các số lớn hơn 3, {x|x > 3}
- Phương trình x = 3 có VT = x; VP = 3
Nghiệm của phương trình x = 3 là 3.
x2 – x – (3x – 3) = 0
⇔ x(x – 1) – 3(x – 1) = 0
⇔ (x – 3)(x – 1) = 0
⇔ x – 3 = 0 hoặc x – 1 = 0
+ x – 3 = 0 ⇔ x = 3
+ x – 1 = 0 ⇔ x = 1.
Vậy phương trình có tập nghiệm S = {1; 3}.
(x2 – 4) + (x – 2)(3 – 2x) = 0
⇔ (x – 2)(x + 2) + (x – 2)(3 – 2x) = 0
⇔ (x – 2)[(x + 2) + (3 – 2x)] = 0
⇔ (x – 2)(5 – x) = 0
⇔ x – 2 = 0 hoặc 5 – x = 0
+ x – 2 = 0 ⇔ x = 2
+ 5 – x = 0 ⇔ x = 5.
Vậy tập nghiệm của phương trình là S = {2; 5}.
+) Cách làm của bạn Sơn sai vì chưa đặt điều kiện xác định cho phương trình đã nhân cả hai vế với ( x- 5).
+) Cách làm của bạn Hà sai vì chưa đặt điều kiện xác định cho phương trình đã rút gọn cả hai vế cho biểu thức (x- 5) phụ thuộc biến x.
+) Cách giải đúng
Điều kiện xác định:
Ta có:
Suy ra: x2 – 5x = 5( x- 5)
x( x- 5) – 5(x – 5) = 0
( x- 5).( x- 5) =0
(x - 5)2 = 0
x – 5= 0
x = 5 ( không thỏa mãn ĐKXĐ).
Vậy phương trình đã cho vô nghiệm.
Bạn Mai giải đúng và bạn An giải sai vì khi bạn An chia cả hai vế cho \(x\) thì chưa đảm bảo tính số chia khác 0 do chúng ta chưa biết \(x\).
x - 5 > 3
⇔ x > 3 + 5 (chuyển -5 từ vế trái sang vế phải và đổi dấu thành 5)
⇔ x > 8.
Vậy nghiệm của bất phương trình là x > 8.
Ta có: 3x < 2x + 5 ⇔ 3x – 2x < 5 ⇔ x < 5
Vậy tập nghiệm của bất phương trình là: {x|x < 5}
Ta có: x + 5 < 7 ⇔ x < 7 – 5 ⇔ x < 2
Vậy tập nghiệm của bất phương trình là: {x|x < 2}
Vế trái: x2; Vế phải: 6x –5