Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow x^2+6x+9-6x+3>x^2-4x\)
=>-4x<12
hay x>-3
2: \(\Leftrightarrow6+2x+2>2x-1-12\)
=>8>-13(đúng)
4: \(\dfrac{2x+1}{x-3}\le2\)
\(\Leftrightarrow\dfrac{2x+1-2x+6}{x-3}< =0\)
=>x-3<0
hay x<3
6: =>(x+4)(x-1)<=0
=>-4<=x<=1
Ta có: 5 – 3x < (4 + 2x) – 1 ⇔ 5 – 3x < 4 + 2x – 1
⇔ -3x – 2x < 4 – 1 – 5 ⇔ -5x < -2 ⇔ x > 2/5
Vậy chỉ có giá trị 2/3 > 2/5 nên trong các số đã cho thì số 2/3 là nghiệm của bất phương trình.
1: =>2(x+2)>3x+1
=>2x+4-3x-1>0
=>-x+3>0
=>-x>-3
=>x<3
2: =>12x^2-2x>12x^2+9x-8x-6
=>-2x>-x-6
=>-x>-6
=>x<6
3: =>4(x+1)-12>=3(x-2)
=>4x+4-12>=3x-6
=>4x-8>=3x-6
=>x>=2
4: =>-5x<=15
=>x>=-3
5: =>3(x+2)-5(x-2)<30
=>3x+6-5x+10<30
=>-2x+16<30
=>-2x<14
=>x>-7
6: =>5(x+2)<3(3-2x)
=>5x+10<9-6x
=>11x<-1
=>x<-1/11
g.\(\dfrac{1-3x}{6}+x-1=\dfrac{x+2}{2}\)
\(\Leftrightarrow\dfrac{\left(1-3x\right)+6\left(x-1\right)}{6}=\dfrac{3\left(x+2\right)}{6}\)
\(\Leftrightarrow\left(1-3x\right)+6\left(x-1\right)=3\left(x+2\right)\)
\(\Leftrightarrow1-3x+6x-6=3x+6\)
\(\Leftrightarrow-5=6\left(vô.lí\right)\)
Vậy pt vô nghiệm
h.\(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
\(\Leftrightarrow\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-100-2\left(3x+2\right)=8\left(3x-1\right)\)
\(\Leftrightarrow30x+15-100-6x-4=24x-8\)
\(\Leftrightarrow-89=-8\left(vô.lí\right)\)
Vậy pt vô nghiệm
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{4x^2+4x+1}{5}-\dfrac{x^2-2x+1}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{12x^2+12x+3}{15}-\dfrac{5x^2-10x+5}{15}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)
\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)
\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow x+8-12+20x=0\)
\(\Leftrightarrow21x-4=0\)
\(\Leftrightarrow21x=4\)
\(\Leftrightarrow x=\dfrac{4}{21}\)
Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)
Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!
Giaỉ bất phương trình: \(5-3x< \left(4+2x\right)-1\\ < =>5-3x< 4+2x-1\\ < =>-3x-2x< 4-1-5\\ < =>-5x< -2\\ =>x>\dfrac{-5}{-2}\\ < =>x>\dfrac{5}{2}\)
Vì: \(\dfrac{2}{3},\dfrac{2}{7},\dfrac{-4}{5}< \dfrac{5}{2}\)
=> Không có số nào là nghiệm của bất phương trình.
Ta có :
\(5-3x< \left(4+2x\right)-1\Leftrightarrow x>\dfrac{2}{5}\)
Vậy chỉ có số \(\dfrac{2}{3}\) là nghiệm