Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^8+x^4+1=x^8-x^2+x^4-x+x^2+x+1=x^2(x^6-1)+x(x^3-1)+x^2+x+1=x^2(x^3-1)(x^3+1)+x(x^3-1)+x^2+x+1=x^2(x^3+1)(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+x^2+x+1=(x^2+x+1)[x^2(x^3+1)(x-1)+x(x-1)+1)]
Bài 1 :
Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)
\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
=> HĐT ko đc CM
Bài 2 :
a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)
Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)
Xin phép chủ nahf cho mjnh sửa đề:D
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
a,\(\left(a+b\right)^4\)
\(=\left[\left(a+b\right)^2\right]^2\)
\(=\left(a^2+2ab+b^2\right)^2\)
\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)
\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)
\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)
\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
Bài 2:
a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=\left(x^3-8\right)-\left(x-1\right)+7\)
b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)
\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)
\(=8x^3-8-8x^3+1\)
\(=-7\)
1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
a) \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
c) \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)
d) \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
e) \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
Ta có: \(x^4+y^4+\left(x+y\right)^4\)\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2x^4+2y^4+4x^2y^2+4x^3y+4xy^3+2x^2y^2\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)+2xy\left(x^2+y^2\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2\left(dpcm\right)\)
Bài 1: Khai triển các hằng đẳng thức
a) ( x - 3 )( x2 + 3x + 9 )
= x3 - 33
= x3 - 27
b) ( 5x - 1 )( 1 + 5x + 25x2 )
= ( 5x - 1 )(25x2 + 5x + 1 )
= (5x)3 - 1
= 125x3 - 1
c) ( x2 - 1 ) ( x4 + x2 + 1 )
= (x2)3 - 1
= x6 - 1
a) ( x - 3 )( x2 + 3x + 9 )=x3-9
b) ( 5x - 1 ) ( 1 + 5x + 25x2 )=125x3-1
c) ( x2 - 1 ) ( x4 + x2 + 1 )=x6-1
Ta có : \(\left(x-3\right)^3+3.\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow x^3-9x^2+27x-27+3.\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow x^3-6x^2+33x-24=x^3+8\)
\(\Leftrightarrow-6x^2+33x-32=0\)
\(\Leftrightarrow6x^2-33x+32=0\)
\(\Leftrightarrow x=\frac{33\pm\sqrt{321}}{12}\)
a, \(\left(x+1\right)^2-25=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
b, \(\left(xy+4\right)^2-4\left(x+y\right)^2=\left(xy+4\right)^2-\left(2x+2y\right)^2=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
c, xem lại đề nhé
Bài giải
\(a,\text{ }a^2+9-6a=a^2+2\cdot3a+3^2=\left(a-3\right)^2\)
\(b,\text{ }x^2-x+\frac{1}{4}=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
\(c,\text{ }-x^2+4x-x=3x-x^2=\left(\sqrt{3x}\right)^2-x^2=\left(\sqrt{3x}-x\right)\left(\sqrt{3x}+x\right)\)( Đề nói vận dụng hằng đẳng thức để rút gọn nên mình đưa về hiệu hai ình phương nha ! )
\(\left(x+1\right)^4+\left(x-1\right)^4\)
\(=\left(x+1\right)^2.\left(x+1\right)^2+\left(x-1\right)^2.\left(x-1\right)^2\)
\(=\left(x^2+2x+1\right).\left(x^2+2x+1\right)+\left(x^2-2x+1\right).\left(x^2-2x+1\right)\)
\(=x^4+2x^3+x^2+2x^3+4x^2+2x+x^2+2x+1+x^4-2x^3+x^2-2x^3+4x^2-2x+x^2-2x+1\)
\(=2x^4+12x^2+2\)